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Abstract: Real-time perception based on the simultaneous localization and mapping (SLAM) technology is of immense 
application potential in the industry filed. In this work, we provide an extended Kalman filter (EKF) based visual SLAM 
framework named Fusion VIO, which contains HDR imaging system, hardware synchronization, object detection, filter 
based sensor fusion, and semantic fusion. Notably, Fusion VIO well fuses loop closure information, which takes effects in 
solving the error problem during operation of the robot and improving the robustness of the system. Besides, experimental 
validation shows that Fusion VIO not only maintains high accuracy but also cost one-third resources compared to the com-
mon VINS fusion. Our work demonstrates a novel sensor fusion framework for unmaned vehicles.
Keywords: time synchronization, SLAM, sensor fusion

1. Introduction
Simultaneous localization and mapping (SLAM) technology meets the requirements of robots and AR/VR devices to

perceive the current scene and position in real-time during operation. In the last decade, new spin-off technologies, such 
as visual SLAM and visual inertial SLAM, have been proposed. At the same time, chips and MEMS devices for SLAM 
utilization have made great process as well. In addition, sensors such as cameras, IMUs and lidars have improved at higher 
precision and lower price also.

The image sensor has received a much attention due to the advantages of tiny, low-cost, and off-the-shelf hardware.. A 
substantial amount of visual sensor-based SLAM methods and solutions are invented. Visual SLAM solution is perfect for 
engine efficiency, excellent robustness and provides rich perception information for upper-level applications.

VINS (visual-inertial navigation system) is one of the most promising low-cost synchronous localization and mapping 
solutions. It has the characteristics of small, light, and low cost. The primary module of VINS includes data acquisition, time 
synchronization, loop closure, and optimization. In many VINS solutions, the solution equipped with camera and inertial 
measurement unit (IMU) named visual-inertial SLAM (VI-SLAM). The angular velocity and acceleration measured by the 
IMU can be complementary to the camera measurements. After the fusion, there is only a slight drift, which can configure a 
more complete SLAM system. According to back-end optimization methods, VI-SLAM can be characterized into two parts 
- filter-based VI-SLAM and optimization-based VI-SLAM[1-2].

Open keyframe based visual-inertial SLAM (OKVIS) is an optimization-based method announced by the Swiss Federal 
Institute of Technology, ASL lab announced [3]; the sliding window based on keyframes perform batch nonlinear optimiza-
tion, key frames before the sliding window are marginalized out after estimation. Front-end adopt multi scale Harris detec-
tor for feature extraction. Furthermore, based on the Harris detector, BRISK[4] (binary robust invariant salable key-point) 
descriptor is calculated in order to associate data from frame to frame. ORB-SLAM 3 uses three threads that track feature 
points in real time[5], optimization thread for local mapping (co-visibility graph), and a global optimization thread (essential 
graph). It can achieve excellent tracking and 3D map relocalization. The map ensures the global consistency between the 
trajectory of the robot and the map, resulting in better performance.

As to the filtering-based method, Jones et al. introduced the EKF framework into the VI-SLAM system. The system 
realized the estimation of states and parameters as part of the online program and used the EKF framework for effective 
implementation. Kelly et al. introduced the UKF framework into the VI-SLAM system. This method can calibrate and up-
date the pose online at each update step. MSCKF is the VI-SLAM framework based on the extended Kalman filter proposed 
by Mourikis in 2007[6]. Only the camera state in the window is added in the state vector, and feature points are ignored, 
reducing the amount of calculation. The ARL laboratory subsequently launched the Maplab framework with a complete 
VI-SLAM system with loop detection and relocation functions[7]. The system consists of two parts, one is the online visual
inertial global positioning system ROVIOLI (ROVIO with localization integration)[8], which receives the image and inertial
sensor data as input, outputs the global pose estimation. The other part is the offline Maplab console, which allows users to
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apply various algorithms on the map in offline batch processing. Open VINS is a kind of  VINS algorithm based on MSCKF, 
open-sourced by Huang Guoquan in August 2019[9]. It mainly provides a manifold sliding window Kalman filter, the state 
consist not only camera intrinsic and extrinsic param eters, but camera-inertial sensor time offset also. The main features of 
Open VINS are landmark (FEJ) processing with different representations and consistent first estimates, a module for state 
management such as an integrated system, an extensible visual-inertial system simulator, and a wide range of toolboxes for 
algorithm evaluation. Its accuracy can be comparable to optimization based SLAM on some open-source data sets.

This paper proposed fusion VIO, a filter-based sensor fusion framework for localization, which provides stable and 
robust positioning information. The main work discussed in this article contains two parts：1. FPGA-based high preci-
sion time synchronization module.  2. filter-based multi-sensor fusion framework. Firstly, we introduce the overall system 
structure. At the second part, the FPGA solution can effectively implement the clock synchronization of the sensor data to 
provide accurate and reliable data to the core algorithm unit. Next, in the fusion part, the open vins framework is extended 
to implement dynamic system state initialization and multi-sensor fusion. This method effectively solves the error problem 
caused by the loss of sensor data during the operation of the robot, and improves the robustness of the system.

2. Fusion SLAM - Synchronization
The system architecture of Fusion VIO as shown in Figure 1. The whole SLAM system consists of following six parts:
Sensor data enhancement such as HDR[10,11] and time synchronization (in light blue)
Front-end detection module including 2D image feature detection and object detection (in green and light red)
Loop closure module include key frame decision and loop detection (in dark red)
Sensor fusion module (in light blue)
Mapping module (in dark blue)
Global optimization module (in dark blue)

Figure 1. System architecture 

2.1 Meaning of synchronization
A well-designed and implemented synchronization module is a must have feature in most of SLAM products, especially 

a tightly coupled SLAM. The reason is that timing directly determines the real-time characteristics of the system. Real-time 
can effectively respond to the continuous changes of the real environment and provide reliable and stable location infor-
mation of the device to the upper-level application. As a result, the upper-level application can quickly respond and make 
decisions based on the location of the task goal.

2.2 Time synchronization 
In order to ensure the real-time performance of the system, Time synchronization accuracy must reach to millisecond 

level. This accuracy cannot be achieved in a non-real-time operating system since the system is unable to respond in time 
after the data arrives, and the corresponding time varies with the system’s load. We did a few tests on the NVIDIA Jetson 
TX2 platform, the timing issue mentioned above is 50 ms approximately. The solution to this problem can be divided into 
two categories: software and hardware synchronization.
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Figure 2. Time synchronization

2.2.1 Software synchronization
In principle, it is feasible to install a real-time patch on a non-real-time system or use a real-time operating system 

directly. However, this solution requires a lot of time and resources. The development, maintenance, and debugging of re-
al-time operating systems are very different from non-real-time systems such as ubuntu. The difference puts higher require-
ments on the developer's knowledge and development ability.

2.2.2 Hardware synchronization
Hardware synchronization can be achieved through sensor trigger and FPGA. Sensors with external trigger mechanism 

are generally too expensive to meet the cost requirements of product. Therefore, our system utilized FPGA for synchroniza-
tion. All sensors were connected to FPGA and marked with the same standard system timestamp.

Hardware synchronization system architecture is shown in Figure 3.

Figure 3. Modules in FPGA architecture

3. Open VINS
The two main contributions of this paper is as follows. Firstly, we extend an EKF based framework of VIO-open vins 

to fuse wheel odometry and GPS measurements, called fusion VIO. Secondly, we also implemented dynamic initialization 
of the system.

Open vins is a variant of MSCKF, and its state vector consists of five major parts: { xI  xC  xM  xW  ct }, where
xI is { q , p , v , ba , bg } represents quaternion, position, velocity, acceleration and gyro bias; 
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xC is { qci , pci } represents image quaternion and position in the sliding window; 
xM is { qmi , pmi } represents feature quaternion and position in world coordinates; 
xM represents cameras’ extrinsic and intrinsic parameters;
ct represents the time difference between IMU and camera.
The system propagates the statue with IMU measurements by error state Kalman filter[12,13].

3.1 State vector
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For vector variables, the "boxplus" and "boxminus" operations, which map elements to and from a given manifold, 
equate to simple addition and subtraction of their vectors:
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3.2 Motion model
Propagate state with IMU measurements:
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Discrete these function and we get:
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3.3 Update
Generally, visual updates consist of MSCKF and SLAM feature updates.
MSCKF feature  means the visual feature lost in the sliding window.
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SLAM feature means the visual feature tracked in the whole window. 
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As soon as the lost feature is detected, all the observations will be accumulated and triangulate their global position. 
There are two parts of Jacobian in residual function, including state Jacobian and feature Jacobian. The second part is com-
posed of features. Because the number of features is different in each frame, a null-left projection must be applied, and then 
a standard EKF update can be applied as follows:
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Except for IMU and feature state, open vins calibrate intrinsic, extrinsic, and time differences between IMU and camera 
at the same time.

4. Wheel odometry fusion
The main contribution of the paper is that we integrate wheel measurements. Different from visual measurements, the 

wheel just provides 2D information, such as x, y position and yaw angle. And the three main coordinates frames – body 
(IMU), camera, and wheel, as shown in Figure 4.

Figure 4. Body and IMU frames
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Extend state vector:
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where xWE
T  is {q,p} represents quaternion and position from wheel to body. OtI is the time difference between IMU 

and wheel.

4.1 Wheel measurements per-integration
First, we select all-wheel measurements between two images in that wheel encoder is much quicker than image. We do 

wheel update right after image update to avoid too much resource consuming.
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4.2 Residual and Jacobians
Estimated value residual is equal to per-integrate measurements.
Note that prediction-measurement form is in orientation residual because of the definition of 2D orientation perturba-

tion.
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Moreover, compute Jacobians with respect to system states:
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4.3 Update
And then, we can perform a standard EKF update similar to visual updates:
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then
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Similar to wheel measurements updates, GPS can provide similar data such as velocity to wheel measurements. The 
main difference is that GPS provides 3D velocity. So in equations (13-14), residual and Jacobians' definitions should extend 
to 3D.

5. Initialization
Another significant contribution of this paper is an initialization similar to vins-mono[14] and ORB SLAM 3. Dynamic 

initialization is an important feature of the system.
Usually, EKF based SLAM system is initialized statically. Since it is impossible to stay statically in initialization pro-

cedure in some scenarios, it is unsuitable for uncrewed vehicles, such as UAVs.
Except for the state variable Xi , another two parameters have to be initialized in the Initialization procedure. There are  

s and GC0 . s represents visual scale in that the system is equipped with a single camera only. GC0 represents the rotation from 
absolute gravity [0,0,9.81] to IMU of the first frame.
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5.1 Static initialization
If the system can be initialized statically, the scale variable is unobservable.
GC0 can be calculated from the average of IMU measurements because three axes are perpendicular, and the z-axis is 

observable. After we gain GC0 , remove project of gravity on three axes and ba, bg is determined. Quaternion are set to iden-
tity. And position, ba,bg set to zero usually.

5.2 Dynamic initialization
Vision and inertial only pose estimation: Firstly, perform visual, and IMU poses estimation separately. 
Visual only initialization is similar to VINS-mono and ORB SLAM 3. The main difference is multi-view triangulation 

in fusion VIO and two view reconstruction in vins-mono.
IMU pre-integration is as follows:
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The integration method above requires frame bk’s rotation, position, and velocity. If starting states change, we need to 
re-propagate all IMU measurements, which is costly. To avoid re-integration, we adopt a pre-integration algorithm.
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then
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5.3 Gyroscope bias estimation
The difference between two rotations calculated from IMU and visual can be affected by bg.
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5.4 State estimation
After bg estimated, re-integrated frame pose with estimated bg in the last step. Other state XI can be calculated as fol-

lows:
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Table 1. Mono comparison

V101 V102 V103
Time CPU Memory Accuracy Time CPU Memory Accuracy Time CPU Memory Accuracy

VINS 
Fusion

max
150

113.30 83228.00
2.64 97

120.00 79916.00
2.11 113

113.30 81088.00
2.51

avg 100.56 75986.67 100.00 74428.92 82.75 75151.20
OPEN 
VINS

max
49

100.00 96924.00
2.64 30

100.00 89980.00
2.60 35

106.70 93072.00
2.13

avg 98.33 93727.00 96.50 89716.00 102.23 90993.33
ORB 

SLAM3
max

160
246.70 760396.00

4.38 97
226.70 711388.00

3.65 118
206.70 750548.00

3.66
avg 188.15 623451.75 184.00 586261.60 180.57 614971.67

Ours
max

48
101.30 97112.00

2.65 32
110.00 79932.00

2.61 37
108.70 98781.00

2.14
avg 98.00 89781.50 95.50 75253.00 101.30 95235.00

V201 V202 V203
Time CPU Memory Accuracy Time CPU Memory Accuracy Time CPU Memory Accuracy

VINS 
Fusion

max
117

106.70 79580.00
5.34 121

113.30 71804.00
X 120

126.70 74356.00
4.34

avg 92.01 75460.80 81.92 70695.27 100.61 71058.55
OPEN 
VINS

max
34

106.70 89376.00
5.20 38

100.00 89072.00
4.54 29

100.00 89416.00
4.23

avg 100.00 88006.67 97.93 87346.67 100.00 88220.00
ORB 

SLAM3
max

127
220.00 752224.00

3.52 130
226.70 754184.00

3.63 128
213.30 770780.00

3.71
avg 175.06 601584.31 191.38 623500.00 174.36 614313.23

Ours
max

34
108.60 91789.00

5.30 37
100.00 91002.00

4.51 28
100.00 89523.00

3.90
avg 101.30 89456.00 97.20 89231.00 99.10 88965.00

Table 2. Stereo comparison

V101 V102 V103
Time CPU Memory Accuracy Time CPU Memory Accuracy Time CPU Memory Accuracy

VINS 
Fusion

max
150

146.70 89748.00
2.47 97

180.00 84076.00
2.40 113

180.00 82908.00
2.36

avg 128.50 83526.57 129.90 80057.50 115.60 78573.45
OPEN 
VINS

max
88

106.70 104436.00
2.68 51

106.70 97828.00
2.53 62

106.70 101024.00
2.41

avg 100.90 102314.50 101.34 95874.40 101.34 100668.80
ORB 

SLAM3
max

169
400.00 808764.00

4.38 102
333.30 760744.00

4.27 123
380.00 835072.00

3.76
avg 304.16 662796.25 262.08 609962.00 284.68 646493.00

Ours
max

89
105.20 114632.00

2.69 50
105.66 102350.00

2.53 66
110.00 112356.00

2.51
avg 100.30 102346.00 100.50 99456.00 105.00 109988.00

V201 V202 V203
Time CPU Memory Accuracy Time CPU Memory Accuracy Time CPU Memory Accuracy

VINS 
Fusion

max
117

173.30 89928.00
5.12 120

160.00 83432.00
4.52 120

146.70 81152.00
4.21

avg 124.85 84225.45 131.53 78533.45 117.55 76656.00
OPEN 
VINS

max
64

113.30 96732.00
5.19 68

106.70 122304.00
4.49 53

100.00 99476.00
4.13

avg 104.53 95302.67 101.12 119480.00 97.42 98039.20
ORB 

SLAM3
max

134
320.00 744232.00

3.57 136
393.30 855888.00

3.73 132
426.70 931184.00

3.69
avg 265.03 603560.92 287.14 676458.00 282.02 704539.38

Ours
max

61
109.00 95879.00

4.80 71
326.70 113253.00

4.20 52
99.00 98465.00

4.30
avg 100.00 93546.00 180.00 109980.00 95.30 94651.00
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6. Experience results
We evaluate the proposed fusion VIO with datasets recorded in the lab, which equipped a motion capture system.

Figure 5. The environment of experience

The following configuration achieved the experiments:
Mono and Stereo camera
Low-cost imu
X86 platform (Intel i5 Quad Core CPU, 8G DDR4 memory) 

Figure 6. Difference solution in the indoor scene

The experiments prove that the fusion VIO achieved similar accuracy but cost one-third of resources compared to ORB 
SLAM 3.

7. Conclusion and future work
In this paper, we have presented our Fusion VIO system as a platform for industrial purposes. We provide an EKF 

based visual SLAM framework to fuse GPS or wheel encoder measurements. The method stated above can fuse any sensor 
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provides speed measurements. In particular, we proposed methods of dynamic initialization.
We plan to expand our system to provide the ability to fuse loop closure information in the future. We believe that this 

feature makes the system more robust. We are also interested in integrating visual-inertial mapping and semantic perception 
capabilities into Fusion SLAM.
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