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ABSTRACT 
Feature detection and Tracking, which heavily rely on the gray value information of images, is a very importance 

procedure for Visual-Inertial Odometry (VIO) and the tracking results significantly affect the accuracy of the estimation 
results and the robustness of VIO. In high contrast lighting condition environment, images captured by auto exposure 
camera shows frequently change with its exposure time. As a result, the gray value of the same feature in the image show 
vary from frame to frame, which poses large challenge to the feature detection and tracking procedure. Moreover, this 
problem further been aggravated by the nonlinear camera response function and lens attenuation. However, very few VIO 
methods take full advantage of photometric camera calibration and discuss the influence of photometric calibration to the 
VIO. In this paper, we proposed a robust monocular visual-inertial odometry, PC-VINS-Mono, which can be understood 
as an extension of the opens-source VIO pipeline, VINS-Mono, with the capability of photometric calibration. We 
evaluate the proposed algorithm with the public dataset. Experimental results show that, with photometric calibration, our 
algorithm achieves better performance comparing to the VINS-Mono. 
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1. Introduction
Monocular Visual-Inertial Odometry (VIO) attracts significant attentions from

large number of researchers and is gaining the popularity in various potential 
applications, such as robotics and augmented reality due to the miniaturization in size 
and low cost in price. In recent years, a number of VIO frameworks have been 
proposed, such as MSCKF[1], [2], OKVIS[3], [4], ROVIO[5] and VINS-Mono[6] and 
demonstrate tremendous improvement in accuracy, robustness and efficiency. 

VIO is seen as the extension of VO with fusing IMU and vision measurements to 
estimate the pose of camera, based on the Bayes' theorem. As a result, many 
components of VIO share the same ones with VO. Similarly to VO, VIO can be 
classified into three formulations: indirect method [7], semi-direct method [8]–[10] 
and direct method [11]–[13], depending how to use the information of image. Both 
these three formulations use direct or indirect of the image information, the gray value 
of images, to track the project location of the same scene point across different images 
to estimate the 6-D camera motion. Therefore, all these methods are sensitive to 
illumination change, especially the direct and semi-direct method, which assume the 
brightness of the same scene point projecting into different images appear with 
constant values, also known as brightness consistency assumption. For images 
captured by real camera, it is inevitable that pixels corresponding to the same scene 
point have different intensities across images due to lens attenuation, auto gain and 
exposure control, which cause the scene point tracking more difficulty. However, no 
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so many researches have been reported the influence of 
photometric calibration to VIO 

A breakthrough in this filed is the TUM monoVO 
dataset [14], which provide 50 real-world sequences with 
photometrically calibrated. A novel, simple approach to 
non-parametric vignette calibration also proposed in the 
corresponding paper. Later, in [11] the author proposed 
Direct Sparse Odometry (DSO), the first fully direct method 
take full advantage of photometric camera calibration, 
which showed impressive results. With the combination of 
IMU, VI-DSO was proposed in [11]. However, the 
evaluation experiments were run with EuRoc dataset [15], 
of which, the camera is not photometrically calibrated. As a 
result, the improvement with photometric calibration is not 
reported. In [16], the influence of photometric calibration to 
DSO, ORB-SLAM[17], [18], Semi-Direct Visual Odometry 
(SVO), three representative, the-state-of-the-art of direct, 
indirect and semi-direct methods, is evaluated 
quantitatively with the TUM monoVO dataset. The 
experiment results drawn a counter-intuitive results that 
photometric calibration may reduce the overall performance 
of semi-direct based method, SVO, and for ORB-SLAM, 
the performance decline even larger. The possible reason is 
that photometric calibration reduces the contrast of dark 
areas while increase it for bright areas, which, as a result, 
decline the performance of feature detection and descriptor 
extracting algorithm. However, no VIO framework is 
evaluated in this paper. Moreover, the exposure time 𝑡 is 
not integrated into the formulation of ORB-SLAM and SVO. 
In [19], The TUM VI Benchmark for Evaluating VIO have 
been proposed and public available. This Benchmark 
including a diverse set of sequences in different scenes and 
the camera it used to record is photometric calibration. To 
the best of our knowledge, still there is not any researches 
that take full advantage of photometric camera calibration 
into the VIO framework and evaluate the influence to the 
performance. 

On the other hand, [6] proposes VINS-Mono, a VIO 
pipeline with loop closure and global map optimization and 
demonstrates the state-of-the-art results compared to the 
existing VIO method. VINS-Mono uses the optic-flow 
method, which is based on the brightness consistency 
assumption, to detect and track the features. As a result, it is 
sensitive to illumination change.  

In this paper, we propose a robust mono visual-inertial 

odometry with photometric calibration, PC-VINS-Mono, 
which can be understood as an extension of VINS-Mono, 
with the capability of photometric calibration. As a result, 
PC-VINS-Mono is more robust to the illumination change 
and shows improvement performance. 

The remainder of this paper is as follows. In Section 2, 
we give an overview of the complete system pipeline. In 
Section 3, we detail how to extend the VINS-Mono with 
photometric calibration. In Section 4, we evaluate the 
proposed VIO with the public available dataset and provide 
quantity analysis of the performance compared to VINS-
Mono. We conclude the paper in Section 5. 

2. System Overview
As our work can be understood as an extension of

VINS-Mono [6]. For the sake of completeness, we briefly 
review every stage of VINS-Mono firstly. Then we focus on 
the feature detection and tracking procedure and details 
integrating the capability of photometric calibration into 
this module. 

The structure of VINS-Mono is depicted in Fig. 1. The 
system starts with measurement preprocessing, in which 
features are extracted and tracked, and IMU measurements 
between two consecutive frames are preintegrated. The 
coming frame with its corresponding future tracking 
information and the preintegrated results would be added to 
the sliding window for feature optimization. As the 
monocular camera is incapable of recovering the metric 
scale information as well as its attitude with respect to the 
gravity, an initialization procedure is needed to provide all 
the necessary initial values, including pose, velocity, gravity 
vector, gyroscope bias, and three-dimensional (3-D) feature 
location, for bootstrapping the subsequent nonlinear 
optimization-based VIO. The tightly-coupled nonlinear 
optimization would be implemented when every frame is 
added to the sliding window after the system has been 
successfully bootstrapping. Keyframe management module 
determines which frame would be removed from the sliding 
window and marginalizes it out to bound the computation 
complexity of the optimization procedure. The map 
management module also removes the map points 
corresponding to the removed frame. As we concern on the 
VIO front-end, the loop closure and global pose graph 
optimization is not included in Fig. 1. 
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Fig. 1 VINS-Mono Framework. Our work extends the feature detection and tracking procedure with photometric 
calibration, which is marked as orange block in the figure. 

VINS-Mono is a tightly-coupled VIO framework, 
which minimize the sum of prior and the Mahalanobis norm 

of all measurement residuals to obtain a maximum 
posteriori estimation as 

min
𝒳
{‖𝑟𝑝 −𝐻𝑝𝒳‖

2
+∑ ‖𝑟𝐵 (�̂�𝑏𝑘+1

𝑏𝑘 ,𝒳)‖
𝑃𝑏𝑘+1

𝑏𝑘

2

𝑘∈𝐵 + ∑ 𝜌 (‖𝑟𝐶(�̂�𝑙
𝑐𝑗 ,𝒳)‖

2
)𝑘∈𝐵 } (1) 

where 𝓍 is the full system state. 𝜌 is the Huber norm. 
𝑟𝐵  and 𝑟𝐶   are the residuals for IMU and visual
measurements, respectively. For more details, please refer 
to [6]. As the feature detection and tracking results were 
integrated in the objective function to jointly optimization 
with the IMU measurements, the accuracy and robust of the 
results of this procedure would significantly affect the 
performance of the VIO. 

Now we focus on the feature detection and tracking 
procedure. VINS-Mono detects the Shi-Tomasi corners [20] 
in the images and track the corners in the next image using 
Lucas-Kanade method [21]. As Lucas-Kanade method is an 
optic-flow method based on brightness consistency 
assumption, it is sensitive to illumination change. To relive 
this problem, the author uses Contrast Limited Adaptive 
Histogram Equalization to improve contrast in images 
before detecting and tracking features. Nonetheless, VINS-
Mono still affect significant by high-contrast lighting 

condition environment with auto exposure cameras, in 
which, the exposure time is vary from frame to frame. 
Therefore, we extend the feature detection and tracking 
procedure of VINS-Mono with photometric calibration, 
which is marked as orange block in Fig 1. 

3. Photometric Calibration
3.1 Image formation model 

We used the image formation proposed in [8], which 
accounts for a non-linear response function G: R → [0,255], 
as well as lens attenuation (vignetting) V: Ω → [0,1]. The 
combined model is given by 
𝐼(𝑥) = 𝐺(𝑡𝑉(𝑥)𝐵(𝑥)) (2) 

Where, 𝐼  is the observed pixel value, 𝑡  is the 
exposure time, 𝐵 the irradiance image. An illustration of 
the camera model is showed as Fig 2.
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Fig. 2 Illustration of camera model. Image is extracted from TUM monoVO dataset [14]. 
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3.2 Apply photometric calibration to two 
consequent frames 

We try to photometrically calibrate two consequent 
image frames to satisfy the brightness consistency 
assumption as much as possible. Suppose two consequent 
images 𝑘 − 1, 𝑘. we calibrate these two images by: 

𝐼𝑘−1
′ (𝑥) =

𝑡𝑘

𝑡𝑘−1

𝐺−1(𝐼𝑘−1
′ (𝑥))

𝑉(𝑥)
(3) 

𝐼𝑘
′ (𝑥) =

𝐺−1(𝐼𝑘
′ (𝑥))

𝑉(𝑥)
(4) 

Here, we choose to calibrate the previous image with 
the exposure time as we assume that the new coming image 
would have the better contrast. Fig.  illustrates the 
comparison of two consequent images with and without 
photometric calibration. 

Eq.(3) - (4) assume that the camera is photometric 
uncalibrated and the non-linear response function G  and 
lens attenuation 𝑉 are known. However, it is often the case 
that only the exposure time of image is known in reality. In 
this case, we can set the G and 𝑉 to 1 and calibrate the 
image with only the exposure time. We will simulate this 
case in the experiments. 

As reported in [16], photometric calibration may 

reduce the intensity contrast of the image, which may cause 
the feature detection algorithm works worse. To avoid this 
problem, we implement the contrast limited adaptive 
histogram equalization (CLAHE) algorithm to the current 
images before detecting the new features.  

(a) Two consequent raw images from sensor

(b) Two consequent images after photometric calibration

Fig. 3 Example of photometric calibration with two
consequent images. Images are extracted from TUM VI 

Datasets [19]. 

With the discussion above, an overview of the new 
feature detection and tracking procedure with photometric 
calibration is given in Algorithm 1. 

Algorithm 1 Feature detection and Tracking with Photometric Calibration 

For each new image with its corresponding exposure time received: 
Apply photometric calibration to the previous image with Eq.(3). 
Apply photometric calibration to the new input image with Eq.(4). 
Track the keypoints of the previous image in the new image using Lucas-Kanade method 
Remove outliners with RANSAC algorithm. 
Improve brightness contrast using Contrast Limited Adaptive Histogram Equalization 

(CLAHE) method. 
Detect new keypoints with Shi-Tomasi method. 
Save the new raw image and its exposure time as previous image. 

End 

4. Experiments and Results
We evaluate the proposed VIO algorithm using TUM

VI Datasets [19]. The datasets provide a diverse set of 
sequence in different scenes, with 1024x1024 image 
resolution camera with at 20 Hz, and known exposure times, 
linear function and vignette calibration. An IMU measures 
accelerations and angular velocities on 3 axes at 200 Hz, 
while the cameras and IMU sensors are time-synchronized 

in hardware. Only the 5 corridor and 6 room sequences are 
used in our experiments as the exposure time of these 
sequences vary frequently which poses challenge to the 
optic-flow-based tracking algorithm. All the experiments 
run with quarter resolution images (512x512) as [19] did, 
using a laptop computer equipped with an Intel Core(TM) 
i7-7700 CPU @ 3.60GHz CPU and 8GB RAM. we also run 
the algorithm with photometric calibration with only the 
exposure time to simulate the case of camera with unknown 
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response function and lens attenuation factor. To verify the 
necessary of CLAHE for feature detection, we run the 
algorithm with the same config with skipping the CLAHE 
step. 

The root-mean-square error (RMSE) of all the 
estimation results in shown in Table 1, which is evaluated 
by an absolute trajectory error (ATE) [22].  

Table 1 RMSE ATE[22] of the estimation results in meters. t only means calibrate the image with t only. No CLAHE 
means skipping the CLAHE step before feature detection. 

Sequence VINS-Mono Ours Ours 
t only 

Ours 
No CLAHE 

Trajectory 
Length[m] 

corridor1 0.62 0.57 0.50 0.57 305 
corridor2 1.17 0.85 1.12 0.68 322 
corridor3 1.31 1.59 1.82 1.26 300 
corridor4 0.31 0.21 0.17 0.32 114 
corridor5 0.67 0.54 0.55 0.62 270 
room1 0.09 0.05 0.07 0.04 146 
room2 0.05 0.04 0.05 0.05 142 
room3 0.15 0.06 0.09 0.08 135 
room4 0.04 0.03 0.03 0.04 68 
room5 0.20 0.12 0.18 0.13 131 
room6 0.06 0.05 0.06 0.08 67 

Fig. 4 Overall relative pose error [23] in sequence room1-
room6. Three plots are relative errors in translation, 

rotation and yaw, respectively. 

To further evaluate the results, we compute the relative 
pose error [23] using the toolbox provided by [24], with the 
results show in Fig. . Please note that the overall relative 
pose error only computed with the results of sequence 
room1-room6 as only the ground truth of corridor sequences 
only available for the start and end segment and in this case 
the toolbox cannot work. 

Fig.  and Fig.  show the relative pose error and the 
estimated trajectory as well as the ground truth for the 
sequence room1 for more details, as a supplement results of 

the above table and figure. 

Fig. 5 Relative pose error [23] in sequence room1. Three 
plots are relative errors in translation, rotation and yaw, 

respectively. 

Fig. 6 Trajectory in room 1 sequence. 
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Table 1 it is easily to conclude that the propose VIO 
with photometric calibration outperforms the original 
VINS-Mono except the sequence of corridor3. The Overall 
relative pose error [23] showed in Fig.  and Fig.  confirm 
this conclusion further. 

When considered the case that the camera is 
photometric uncalibrated and only the exposure time of the 
image is known, experiment results show that even only 
exposure time calibrated the performance of our algorithm 
still increase in most cases. This conclude that vary 
exposure time pose large challenge to the optic-flow based 
tracking method. 

When compare the estimation results of our algorithm 
with and without CLAHE implementation before feature 
detection, we can find that the ATE of algorithm without 
CLAHE is overall worse than the algorithm with CLAHE. 
This conclude that implementation CLAHE to the image to 
improve the contrast of image is important for feature 
detection algorithm. Besides, the algorithm without 
CLAHE outperforms the original VINS-Mono on most of 
the sequence, again. 

It is interesting that the RMSE ATE of corridor 1 and 
corridor3 with t only show the best performance compare to 
other results. And two of the results of our algorithm with 
skipping the CLAHE implementation, corridor 2 and 
corridor 3, also shows the best performance compare to 
other results. This means apply CLAHE algorithm to each 
image may not be the optimal policy and the algorithm can 
be further improved by adaptively implementation CLAHE 
on the selected image. 

5. Conclusion
In this paper, we proposed a robust Visual-Inertial

Odometry with photometric calibration, PC-VINS-Mono, 
using the photometric response function, vignetting, and 
exposure times. The proposed algorithm can be understood 
as an extension of VINS-Mono with the photometric 
calibration. With this extension, the proposed algorithm is 
capable for high-contrast lighting condition environment 
with auto exposure camera, in which, the exposure time is 
vary from frame to frame, as a result, violating the 
brightness consistency assumption. We evaluate the propose 
algorithm with TUM VI dataset, which including diverse 
sequence in different scenes with different lighting 
condition. Comparison experiments showed that with the 
photometric calibration, the performance of PC-VINS-
Mono increase significantly. For camera with unknown 

response function and lens attenuation factor, experiment 
results show that even only exposure time calibrated the 
performance of our algorithm still increase in most cases. 
Experiments with skipping the CLAHE step show reduce 
performance of our algorithm, which confirm that it is 
necessary applying CLAHE algorithm to improve the 
contrast of images before feature detection as the 
photometric calibration may reduce the contrast of the 
images.  
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