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ABSTRACT
Brain-computer interface (BCI) is an emerging area of research that establishes a connection between the brain and

external devices in a completely new way. It provides a new idea about the rehabilitation of brain diseases,
human-computer interaction and augmented reality. One of the main problems of implementing BCI is to recognize and
classify the motor imagery Electroencephalography(EEG) signals effectively. This paper takes the characteristic data of
motor imagery of EEG as the research object to conduct the research of multi-classification method. In this study, we
use the Emotiv helmet with 16 biomedical sensors to obtain EEG signal, adopt the fast independent component analysis
and the fast Fourier transform to realize signal preprocessing and select the common spatial pattern algorithm to extract
the features of the motor imagery EEG signal. In order to improve the accuracy of recognition of EEG signal, a new
deep learning network is designed for multi-channel self-acquired EEG data set which is named as min-VGG-LSTMnet
in this paper. This network combines Long Short-Term Memory Network with convolutional neural network VGG and
achieves the four-classification task of the left-hand, right-hand, left-foot and right-foot lifting movements based on
motor imagery. The results show that the accuracy of the proposed classification method is at least 8.18% higher than
other mainstream deep-learning methods.
Keywords: Electroencephalography; Motor Imagery; Convolutional Neural Network; Long Short-term Memory
Network
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BCI is an intelligent system that enables users to communicate with external
devices such as computers or neural prostheses without the involvement of
peripheral nerves and muscles[1]. It has been widely studied recently. The research
of BCI has been applied to various aspects of a wide range of fields. In the first
place, BCI can assist people better understand, protect and exploit the brain in the
field of brain cognition; Additionally, it is able to convert the information sent by
the brain into a command of external device to help stroke patients to communicate
with the outside world in the field of medical rehabilitation; Further, BCI
technology provides the possibility of intelligent weaponry which can remotely
control "machine soldiers" in the military field.

A BCI-based system generally records the signals generated by the user’
s brain and controls a machine by detecting the user’s intent through
pre-processing, feature extraction, and classification of brain signals[2]. Among the
various methods to capture the brain activities, electroencephalography (EEG) is
commonly used to collect and feed input signals to BCI systems owing to its
non-invasiveness and low cost[3]. EEG is an electrical phenomenon exhibited by the
electrophysiological activity of the brain’s nerve cells on the surface of the cerebral
co r t e x o r sc a l p . I t i s mo s t w i d e l y an d common l y us e d i n mo t o r

1. Introduction
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imagery-based BCI applications[4].
The classification of motor imagery EEG signal has

obtained many great breakthroughs with the effort of
researchers at home and abroad. Professor Pfurtscheller[5]

designed a BCI system based on Graz I and Graz II
theory, which enables motor imagery EEG devices to
perform different actions based on classification signals,
such as cursor control or character selection operation.
Based on the results of Graz's research, Bernhard
Obermaier[6] studied 5 different motor imagery tasks of
the left hand, right hand, left foot, right foot and brain
computing on the lifting movement, and divided the
research into different brain task combinations of 2 ,3, 4,
and 5 classes. The experimental result shows that the
fusion of three classes of different motor imagery tasks
obtained the largest information transmission rate. Wan
Baikun[7] of Tianjin University adopted two-dimensional
time-frequency analysis combined with Fisher analysis
to extract features of four different limb parts, and
support vector machine was used to recognize. The
accuracy rate of that is 85.7%. Xu Xin[8] of Nanjing
University of Posts and Telecommunications used
common spatial patterns combined with support vector
machine to extract and classify the EEG signals in four
kinds of motor imagery and the highest accuracy rate is
86.3%.

EEG signal is transient, non-stationary, low
signal-to-noise ratio and easy to interfere. Therefore, the
difficulty of BCI based on motor imagery is how to
extract the most important information and select the
optimal model to achieve high-precision recognition and
classification. The signal-to-noise of EEG signal is
relatively low and susceptible to interference. At present,
the noise reduction of EEG signal is mainly achieved by
a method of simple filtering, but some important features
will lose. Therefore, we need to find a method of data
preprocessing that can both reduce noise and retain
important information. The existing feature extraction
methods have low versatility. For the recognition of two
types of tasks, the average accuracy of the algorithm can
reach 85%, but the recognition of multi-class tasks is far
from satisfactory. Deep learning is a method based on
learning the characteristics of sample data. It can be
understood as "feature learning" or "representation
learning". However, EEG data records the sampling

points of the electrode channel over a period of time,
which not directly applicable to the traditional deep
learning method. In this paper, we design a
min-VGG-LSTMnet hybrid deep learning network to
solve the problem of low recognition accuracy of
multi-class task. It combines Long Short-Term Memory
Network with VGGnet, a classic model of Convolutional
Neural Network. The min-VGG-LSTMnet achieved
high-precision of four-class task based on motor imagery.
Compared the performance of the proposed method is
with the mainstream deep learning method, the result
demonstrates that the accuracy of the proposed network
is improved at least 8.18%, and the loss value is
reduced by at least 0.0288. The analysis conclusively
proves that the proposed min-VGG-LSTMnet is superior
to other approaches.

The rest of this paper is arranged as follows: Section
2 introduces related works including signal acquisition,
signal preprocessing and feature extraction. Section 3
introduces the design method of deep neural network.
Section 4 the experimental results are discussed.

2. Materials and Methods
2.1 Signal acquisition

According to the endogenous and exogenous stimuli
of event-related potential, EEG is divided into two types,
spontaneous EEG and induced EEG. The rhythmic
changes of EEG signal generally belong to endogenous
stimuli, and the frequency is in the range of 0~30Hz,
which is divided into five basic bands, � band (<4 Hz),
θ band (4~8 Hz), � band (8~14 Hz), � band (14~30 Hz)
and � band (>30 Hz). Especially, � and � waves are
directly related to the motor imagery BCI study. The
increase of the working memory load in the motor
imagery is often accompanied with the increase of the
power of θ wave, while the � wave is often not
considered in the BCI study. Event-Related
Synchronization (ERS)[9] refers to the increase of cortical
activity in specific frequency bands (such as � and
� bands), and Event-Related Desynchronization (ERD)[10]

refers to the reduction of cortical activity in specific
frequency bands (such as � and � bands). They mainly
reflect the changes of EEG amplitude caused by motor
imagery.

The quantization method for different band power is
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given by the following formula (1):
�ul
�uh

= �−u
u
× 100%, (1)

where A is the energy value of the brain band signal, R is
the average power of the band, ERD/ERS is the power
reduction or increase of the band signal. The negative
percentage value represents ERD, and the positive
percentage value represents ERS.

In order to analyze the motor imagery EEG signals
of different movements and obtain the intrinsic
relationship between EEG signal and motor imagery
tasks, two different data sets are used in this paper. The
first is the official standard competition data set (BCI
Competition III data set[11]), which use 118 electrodes at
the location of extended international 10-20 system to
record EEG signals data of five subjects ("aa", "al", "av",
"aw" and "ay") and divided them into training set and
test set. The subjects perform one of three imaginary
movements, (L)raise left hand, (R)raise right hand, (F)
raise right foot. Before t=2s, subjects gaze the computer
monitor, keeping arms and feet relaxed and avoiding
movement of eyes. When t=2s, the “+” cursor appears on
the screen, prompting the subjects to start preparing.
After 1s, the “+” cursor on the screen will randomly
change to the arrow of left, right and up, and the subjects
will perform the same imaginary action of left hand,
right hand or right foot. When t=7s, the arrow disappears
and the single experiment ends. Each subject contains
140 sample sets per imaginary task and each sample set
includes 1520 sample points. The second data set is the
EEG data of 20 real students collected in the laboratory.
We let 20 subjects carry out the motor imagery tasks, and
collect the data of EEG signal. All subjects gave their
informed consent for inclusion before they participated
in the study. Each subject was divided into four
experimental groups as required, including four types of
motor imagery tasks, raise the left hand, raise the right
hand, raise the left foot, and raise the right foot. First,
from the start of the time to 2nd second before, the
subject stares at the computer monitor and keeps the
arms and feet relaxed, avoiding eyes movement. At 2nd
second, a "+" cursor appears in the center of the display
screen lasting for about 1 second, the subject is prompted
to concentrate on preparation. At 3rd second, the screen

randomly displays arrows indicating the left and right
directions, and the subject should complete the
imaginary motion of left hand, right hand, left foot and
right foot according to the direction of the arrow. When
the arrow disappears, the subject ends the experiment.
The single experiment lasts for about 9 seconds. There
will be 128 sample points per second. In order to avoid
errors caused by the subjects not entering the test state
during the experiment and ensure the accuracy of
analysis and processing of EEG signal, we cut off the
data for the first 3 seconds and the last 1second, and
retain the samples for the middle 5 seconds. The
experiment of each subjects lasts 4 minutes and about
3.72 million sample points are obtained.

14-channel EEG collector Emotiv of Emotiv
company is used as the signal acquisition instrument in
this paper. The most important part of the Emotiv helmet
is 16 biomedical sensors. On the one hand, it touches the
scalp to sense the nerve signal. On the other hand, it
transmits the signal to the computer. The order of the
channels of electrode from left to right is AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, and
there are two reference electrodes CMS and DRL. The
material of sensor is felt pad soaked in saltwater.
Sampling method is sequential. The position of electrode
is shown in Figure 1:

Figure 1. Electrode position map.
2.2 Motor imagery EEG signal preprocessing

Independent Component Analysis (ICA)[12] as a
spatial filtering technique, its coefficients are
determined by the statistical correlation of existing data.
ICA is a statistical analysis method of blind source
separation. “Blind” means unclear source signal or
hybrid system. ICA can efficiently extract independent
original signals from a mixture of multiple sensors. The
FastICA[13] algorithm based on fixed-point iteration is
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used to find the non-Gaussian ��� maximum. FastICA
is implemented by the EEGlab, which is an EEG analysis
toolbox[14]. It can remove the trials containing
artifacts based on statistical features (i.e. variance,
kurtosis and maximum). Then the fast Fourier transform
method is introduced to make the frequency accurate to 1
Hz and intercepting the time window of the EEG signal
from 14 channels.

Figure 2. Each channel's original data brainwave shape.

Figure 3. Get rid of the fake brainwave shape.
When analyzing EEG signals, the potential

activities of electrodes at different spatial positions have
a correlation law, which reflects the synchronous and
asynchronous electrical activity of cerebral cortex
potential. Therefore, the spatial characteristics are very
useful to analyze features of EEG signals. EEG are
multiple time series of different spatial locations
measured on the scalp. The spatial characteristics of EEG
signals can be obtained by predicting the mapping
position of the electrodes from three-dimensional space
to two-dimensional surface. The mapping method uses
Equidistant Projection proposed by Azimuthal, namely
AEP[15]. The distance from the center of projection to any
other point can be preserved by azimuthal equidistant
projection.

Assuming A(r, θ, Φ) is a point in the 3-D space,
which is projected by the AEP and falls in the point M on
the plane of the 2-D image. The equidistant projection
model is:

0 � 0
0 0 1

�
�
�

= �
� , (2)

In this paper, the shape of the Emotiv collector
can be approximated by a sphere. So, we can use the
same method to calculate the projection of the position of
electrode on 2-D surface. As shown in Figure 4:

(a)

(b)

(c)
Figure 4. AEP 3-D spatial position is converted to

2-D position. (a)The position of electrodes in 3-d space.
(b)AEP orthogonal projection. (c) Electrode coordinate.
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We use the Clough-Tocher scheme[16] to estimate
the value of electrodes. Repeating this process for θ band,
α band and β band respectively will produce three
corresponding brain topographic maps. And then
merging the three brain topographic maps together to
form a color image similar to RGB. (three Parameters:
height, width, and color depth). Where the color
indicates different band, the width and height of the
image indicate the spatial distribution of activity on the
cerebral cortex corresponding to the electrode of Emotiv,
which retains the spatial characteristics of EEG signals.
The temporal evolution of brain activity is calculated by
image sequences derived from continuous-time windows,
which retains the temporal characteristics of EEG signals.
The color image is shown in Figure 5:

Figure 5. Combination of brain activity maps into
two-dimensional images of θ, α, and β ranges.
2.2 Common spatial pattern feature extraction
method

The most commonly used feature extraction method
of detecting ERD/ERS phenomenon is the Common
Spatial Pattern (CSP) algorithm, which is a spatial
filtering method. The basic principle is to identify
features by constructing a spatial filter to make the
variance in one type of features is the largest, while the
variance in the other type of features is the smallest and
get eigenvectors with higher resolution. In the
multi-classification problem, the One-Versus-Rest CSP
(OVR-CSP)[17] method implements multi-classification
feature extraction through the binarization of multi-class
problems and count the majority vote of the binary
classifier to determine the class label for each test
sample.

In data set 1, OVR-CSP divides three types of motor
imagery tasks into binary tasks, obtaining three
projection matrices and three sets of corresponding
spatial features. A given single EEG test set with N

channels is represented as a matrix R of size N × T,
where T represents the number of samples in each
channel in a single experiment, ���� = 1,Q,W
corresponds to three tasks EEG signals respectively. The
normalized covariance matrix u� of the three types of
data is calculated as:

u� =
����

�

����������
� ,� = 1,Q,W, (3)

where ����� is the trace operation. The mixed space
covariance matrix is as follow:
u = u1� �� � uQ� �� � uW� �� , (4)

where u���� = 1,Q,W is the average covariance matrix of
multiple experiments for three tasks. The eigenvalue
decomposition of R is :
u = �t��, (5)

Where U and V represent the eigenvector matrix of
R and the eigenvalue diagonal matrix respectively. The
eigenvalue diagonal array is arranged in descending
order. Whitening matrix P is:

� = t−
1
Q��, (6)

When using OVR-CSP calculates the projection
matrices, one of them is classified into one category, and
the other two categories are another category,
represented by u1

' :

u1
' = uQ � uW, (7)

The two types of signal covariance matrices of the
new classification are whitened to:

h1 = �1u1� �� �1��hQ = �1u1
'� �� �1�, (8)

In the above transformation, h1 is a class of
covariance, and hQ is classified into another class,
which can be written as h1 = �1t1�1�,hQ = �1t1

' �1� ,
where �1 is a common eigenvector Matrix. t1 � t1

' = �
(unit matrix), when one of the types of eigenvalues is the
largest, the other type of eigenvalue is the smallest.

�1 = l1����Q = lQ��, (9)
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According to the size of the eigenvalues, the first m
columns of the eigenvectors are formed into a new
matrix l1 , and the remaining columns have constituted
a matrix lQ . l1 , lQand the whitening matrix together
form a spatial filter namely F= �1,�Q . A new signal
�i = � × �� is obtained by spatial filter projection
transformation. We get the eigenvalue of the signal from
the following algorithm:

�� = th� var��iQ�

1
W var��iQ��

, (10)

where �� is the characteristic coefficient.
The data set is preprocessed to obtain the EEG

signals after filtering out the noise. The EVR/ERS
feature of the α-band and β-band of EEG signals is
extracted by the OVR-CSP method. Combined with
multifarious classifiers to complete the
three-classification tasks, then we take the category of
the maximum probability by voting. Counting the
ERD/ERS phenomenon of the left hand, right hand and
right foot motor imagery tasks in the data set 1. As
shown in Table 1. The EEG monitoring
process begins by locating the sites for electrode
placement based on the international 10–20 system[18].
The motor imagery task is mainly related to the channels
C3, Cz and C4, so only consider these three channels.
For classification, classical machine learning methods
such as support vector machines (SVMs), linear
discriminant analysis (LDA), and naive Bayes (NB)
algorithms have been commonly used[19]. The traditional
classifier is suitable for data sets with small subjects and
small data volume, so we choose the data set 1 to test.
The average classification performance specific
parameters obtained by the experiment with 5-fold
cross-validation, the average accuracy of different
categories obtained from different classification
algorithms and experiments of each subject are shown in
Table 2.

Table 1. Left hand, right hand and right foot motion
imaging tasks for ERD/ERS
Motion

Imaging

Tasks

C3 C4 Cz

Left hand ERS ERD /

Right hand ERD ERS /

Right foot ERS ERS ERD

Table 2. Classification performance of dataset 1
Serial

Number
SVM

Naive

Bayes
LDA Mean

aa 0.8253 0.7346 0.8753 0.8117

al 0.8232 0.6875 0.8671 0.7926

av 0.8074 0.6723 0.8426 0.7741

aw 0.7562 0.6214 0.7923 0.7233

ay 0.7935 0.6541 0.8537 0.7671

Mean 0.8011 0.674 0.8462 Mean

Deep learning has evolved from machine learning.
Compared to feature extraction and classification of
traditional machine learning, the biggest improvement of
deep learning is the realization of end-to-end data
learning, which is suitable for increasing data volume.
The application of deep learning for human activity
recognition has been effective in extracting
discriminative features from raw input sequences
acquired from body-worn sensors. Researchers
have been adopting deep-learning methods for activity
recognition[20]. Deep learning is a learning-based method
using a neural network structure with multi hidden
layers[21]. The network structure of deep learning
designed in this paper are built under the deep learning
framework of Keras. There are many deep-learning
algorithms. Mainstream deep-learning algorithm includes
CNN, RNN, and LSTM.
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Convolutional Neural Networks (CNN)[22] is the
most popular network algorithm in deep learning. A
CNN is a neural network that uses convolution operation
instead of traditional matrix multiplication in at least one
layer of the network[23]. This paper adopted the method
of classifying EEG signal into "video frames" to convert
motor imagery EEG signal into image form and applying
it to deep learning networks. Firstly, from the network
layer structure, CNN is divided into convolutional layer,
pooling layer and fully connected layer, which form a
complete network structure with feature extraction and
classification function through stacking. The two most
important features of CNN are local association and
parameter sharing. The convolution operation of the
convolutional layer can be seen as a mathematical
operation of two mutation functions. For
one-dimensional convolution, it is often used in signal
processing to calculate the delay accumulation of signal.
For two-dimensional convolution, the image is
represented by the pixels of a two-dimensional matrix.
That means given an image � ∈ u�∗� , convolution
kernel parameters � ∈ u�∗h and y =WX+b. Where X is
the input of the CNN, W is the weight of the convolution
kernel. When the convolution kernel is convolved, the
related input region is called the receptive field, and the
related output result is called the feature map, the
number of feature map is also called depth.

Recurrent Neural Network (RNN)[24] is a neural
network with short-term memory ability, which is often
used for sequence modeling. In addition to input �� ,
RNN also has a previous node h�−1 of input hidden
layer. The output of each layer of RNN is the result of
combining the two inputs with matrix W and activation
function. The input of RNN is the hidden state of the
sequence data x and the last round of the calculated
output. Assuming the weight matrix of the hidden layer
of the RNN is W, and the hidden state is S. Expanding
the RNN on the time axis, the first layer of the RNN is
the input layer. And the input features are passed to the
first hidden layer by the neurons of the first layer. The
output layer predicts the current time h� with the weight
matrix V. The probability value can be predicted by
softmax. The parameters W required for each hidden
layer calculation are shared parameters.

In principle, RNN can handle such long-term
dependency problems. After the network receives the
input �� at time t, the value of the hidden layer is h� ,
the output value is �� , the final result of the network at
time (t+1) is ���1 , which is the result of the current
input and all history. This realizes the process of
continuous transmission of the RNN of time sequence.
However, In an RNN, increasing the data length may
induce a gradient error, or a gradient explosive may
occur when error parameters are back-propagated. The
gradient explosion phenomenon does not meet the
training objectives, and a typical RNN does not provide
satisfactory results[25]. The long short-term memory
network proposed by Hochreiter and Schmidhuber[26] can
effectively solve this problem.

Long short-term memory (LSTM) is a variant
structure of RNN, which replaces the summation unit of
the hidden layer with a recursive substructure
memory block, which is better at storing and accessing
long dependencies in data. Each memory block contains
an input gate, a forget gate and an output gate in the
original architecture. In an LSTM unit, the cell state
controls the discarding and adding of information
through the gate to achieve forgetting and memorizing
functions[27]. It can automatically forget or retain the
memory of the unit. Using the current input �� of
LSTM and the ��−1 passed from the previous state to
get four states:

z = ��h� w ��

��−1
, (11)

z� = σ w� ��

��−1
, (12)

z� = σ w� ��

��−1
, (13)

zh = σ wh ��

��−1
, (14)

Where ��，��，�h are multiplied by the splicing
vector and then converted to a value between 0 and 1 by
a sigmoid activation function as a gating state. And z is
the value converting the result to a value between -1 and
1 through a tanh activation function. There are three
main phases within LSTM:
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(1) The stage of forgetting. The calculated �� (f
represents the forget) is the forget gate to control the
previous state c�−1 , and decide which ones need to stay
and forget.

(2) Select the memory phase. Select the memory
from input �� . The current input is represented by the
previously calculated z. The selected gating signal is
controlled by �� (i represents information). Adding the
results obtained in the above two steps, we can get the
next state ��.

(3) Output stage. It is controlled by �0 . Similar to
the ordinary RNN, the output �� is often obtained by the
change of ��. The state changes are as follows:
�� = ��⊙ ��−1 � ��⊙ �, (15)

�� = z0 ⊙ tanh �� , (16)

�� = � �⋅�� , (17)

The updated values are controlled by z，��，�0，��.
In LSTM, there are two iterative values, �� and �� .z�

controls the degree of forgetting of �� , while �� and z
control the degree of update of �� , z0 controls the
degree of expression of �� to ��.

We set some hyperparameters as follows in this
paper:

(1) Learning rate. Learning rate is a very important
hyper parameter during the network training process,
which determines whether the objective function can
converge to a local minimum and when it converges to a
minimum. If it is set too large, the loss function value
loss will "explode", and if it is set too small, the training
fit takes too long. At present, a gradient descent
convergence algorithm is widely used in deep learning.
The formula for the gradient descent method is:

�∗ = ω − α �
��
thhh�ω�, (18)

The above formula can update the weight ω. Where
α is the learning rate, and the initial learning rate α=
0.001 in this experiment.

(2) Optimizer selection. The stochastic gradient
descent (SGD) algorithm is as follows:
t��1 = �t� � �∇L�W��, (19)

���1 = �� − t��1, (20)

where t��1 is the updated value of the network weight
in the t+1th iteration, and ���1 is the network weight in
the t+1th iteration.

Adam is an optimizer based exponential decay of
the gradient. Calculating the gradient of the t-time as
follow:
�� = ∇��θ�−1�, (21)

The exponential moving average of the gradient is
calculated as follows:
�� = �1��−1 � �1− �1���, (22)

�� = �Q��−1 � �1− �Q���Q, (23)

where M0 is initialized to 0, β1 is the exponential decay
rate, usually close to 1. Deviation correction for
��, �� and the corrected ��� , ��� are as follows:

��� = ��/�1 − �1
��, (24)

��� = ��/�1 − �Q
��, (25)

Finally:

�� = ��−1 − �∗���� ��� � ��, (26)

Applying the following operations on Adam we can
get the Adabound optimizer:

��� = tt�� �/ ��,�t���,����� , (27)

�� = ���/ �, (28)

(3) Batch size and epoch. The value of the epoch is
determined by fitting the curve. Batch size is often set to
32, 64, 128, etc.

(4) Activation function and weight. The commonly
used activation function is RELU. LRELU and ELU are
developed on the basis of the RELU function. They are
expressed as follows:

Re�� � = � �� � > 0
0 �� � ≤ 0, (29)

�u��� � = �� �� �� > 0
���� �� �� ≤ 0 , (30)
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��� �
� �� x > 0
� exp � − 1 �� x ≤ 0, (31)

where � is the characteristic of the input and � is the
coefficient of the activation.

(5) Batch Normalization(BN). Satisfy the following
equation:

�� = �−��
��0.01

⋅ h��t� � h����, (32)

(6) Dropout. In this paper, the dropout values are set
to 0.25, 0.5, and 0.75 respectively. The experimental
results show that the network training is better at 0.5.

(7) Positive and negative sample ratio. In this paper,
the positive and negative samples of the data set are 1:1,
and the batch method is used for training.

(8) Gird Search. The number of iterations epoch
and batch size can be determined by Gird Search. The
final epoch set in this paper is 500 to 1000, and the batch
size is 128.

In this paper, the classification accuracy (ACC)[28]

combined with the cross-entropy loss function (Loss) are
used to evaluate the experimental criteria. ACC is
calculated as:

�tt = �����
�����������

, (33)

where TP is true positive, FP is false positive, TN is true
negative, FN is false negative. The higher the accuracy,
the better the classifier. The cross-entropy loss function L
is calculated as:

� = �=1
� � �� log�� � � 1− � � log 1 −

�� � ,
(34)

where ���� is the desired output, �� � is the actual output.
The greater the loss, the larger the gradient.

In order to find the optimal classification method,
this paper designs four network structures, namely
EEGnet, CNN-2net, min-VGGnet and min-VGG-LSTM
-net.

Vernon J. Lawhern[29] of Columbia University of
America proposed two EEGnet structures, which directly
apply convolutional neural networks to EEG signals

analysis. This paper adopted the EEGnet shallow
network, and used one-dimensional convolution to
classify time-domain EEG signals. We only extract the
single-dimensional features of EEG signals. The data
size is (N, T), where N is the number of channels and T is
the number of samples. The first layer of convolutional
layer we use a size with N×1 one-dimensional
convolution kernel to extract the spatial channel features.
Convolution kernels are set 40. The second layer of
convolutional layer we use 1×16, the size of each feature
map obtained is 1×8. Convolution kernels are set 80. The
third layer is a fully connected layer, and the neuron
format is set to 256. The fourth layer is the output layer,
which contains 4 neurons, which represents the
four-class task.

CNN-2net network model framework is shown in
Table 3:

Table 3. CNN-2net network model framework
CNN-2net

4 weight layers

Conv5-32

Maxpool

Conv3-64

Maxpool

FC-1024

FC-num_classes

Softmax

There are two layers in the structure of
convolutional layer, and the size of the convolution
kernel can be set casually. The size of the convolution
kernel in CNN-2net is 5×5, and the number of
convolutions generally increases with the number of
network layers. The activation function used in
convolutional neural networks is RELU[30]. The adopted
optimizer Adam optimizer which most commonly used.
The number of neurons and parameters of each layer are
adjusted as follows:

The first layer: the input layer inputs a picture
corresponding to an array of size 28×28×3.

The second layer: the convolution layer, which uses
32 convolution kernels of size 5 × 5 × 3 to convolve the
maps of the input layer, so it contains 32 × 5 × 5 × 3 =
2400 weight parameters. After convolution, the length of
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the picture is (28-5+1)/1 = 24, including 32 × 24 × 24 ×
3 = 55296 neurons.

The third layer: the pooling layer, samplings each
2×2 area of the previous layer, and selects the maximum
value of each area. This layer has no parameters. After
sampling, the length and width of each map become half
of the original.

The fourth layer: the convolution layer, which uses
32 × 64 convolution kernels of size 5 × 5 × 3 to convolve
each map of the previous layer, so it contains 32 × 64 × 5
× 5 × 3 = 153600 weight parameters. After convolution,
the length of the picture is (12-5+1)/1 = 8, including
64×8×8×3=12288 neurons.

The fifth layer: the pooling layer, 8 × 8 × 3 map
downsampling to 4 × 4 × 3 map. This layer has no
parameters.

The sixth layer: the fully connected layer, which
connects all the neurons of the output of the pooling
layer. This layer has 1024 neurons, and
64×4×4×3×1024=3145728 weight parameter.

The seventh layer: the fully connection layer, which
function is similar to the previous fully connection layer.
This layer has num_classes neurons, which are related to
the task category and 1024×num_classes corresponding
parameters.

The eighth layer: the Softmax layer, which is to
achieve classification and normalization operations.

The min-VGGnet network is obtained by adjusting
the number of the convolution layers and the number of
convolution kernels in the VGG network structure. Its
structure is shown in Table 4:

Table 4. Evaluation of the optimal convolution
network min-VGGnet

A B C
6 weight-layers 7 weight-layers 9 weight-layers

Conv3-32
Conv3-32

Conv3-32
Conv3-32

Conv3-32
Conv3-32
Conv3-32
Conv3-32

maxpool
Conv3-64 Conv3-64 Conv3-64
Conv3-64 Conv3-64 Conv3-64

maxpool
Conv3-128 Conv3-128
maxpool

FC-512
FC-num_classes

Softmax
Three sets of comparative experiments were

performed, the difference is the number of layers of the
convolution kernel. All convolution kernel sizes are 3×3.
Experiment A was a 6-layer structure. The first layer is a
stacking of two convolutional layers (Conv3-32), the
second layer is further combined with stacking of two
convolution layers (Conv3-64), the third layer is
maxpool layer. Experiment B is added a convolution
layer on the basis of A (Conv3-128). Experiment C
differed from B in that the first layer of convolutional
layer is stacked with four-layer convolution kernels. The
experimental results show that the optimal network
structure diagram is the structure of experimental A. The
parameters involved in the network structure and training
process are described below.

The first layer is the convolution layer, which uses
32 two-layer convolution kernel stack structure with the
size of [3 × 3]. The step size padding is set to the mode
of "same", and the step size determines the distance
moved in the direction of the gradient drop during each
iteration. Normally step size is set to 1. Processing input
data uses batch standardization, and the training set
sample is convoluted. RELU is adopted as the activation
function, and the feature map has the same size at the
input and output.

The second layer is the pooling layer. This layer
uses the maximum pooling function with a size of [2×2]
namely maxpool to pool the output of the convolution.

The third layer is the convolution layer. This layer
uses 64 two-layer convolution kernel stack structure with
a size of [3×3] to further extract deeper features.

The fourth layer is also the pooling layer, that still
uses the largest pooling function, namely maxpool

The fifth layer is the fully connected layer, which is
a tiled structure. The feature becomes a vector with a size
of 1"×" 512 through a fully connected layer. The fully
connected layer is a highly purified feature.

The sixth layer is also a fully connected layer,
whose purpose is to complete the final classification and
determine the final classification according to the
number of categories num_classes required by the
sample label.
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The seventh layer is the Softmax layer, namely the
activation function is "Softmax". The final classification
is completed.

Long short-term memory network (LSTM) is an
improved RNN, which can process long-time sequence
information better. Therefore, LSTM is introduced for
hybrid network design. The design idea is to use the
min-VGGnet structure with better performance in the
previous section. In this paper, the total number of
parameters in a network with a lower number of neurons
in the fully connected layer are retained. Dropout is set to
0.5, we can get the last two fully connected layers. In this
hybrid model, the output of per-layer convolutional layer
of min-VGGnet performs maximum pooling. Applying
one-dimensional convolution and one-dimensional
pooling to the output of the convolutional layer, and
sending the output after maximum pooling to the LSTM
layer. LSTM can capture features of different time
patterns. The LSTM takes the input x=(�1,�,��) through
a form of sequence and calculates the vector sequence of
the hidden layer h= h1,�,hT and the output vector y =
�1,�,y� . The iteration of t=1 to T is:
�� = ������� ������−1 � �� , (35)

�� = ����� � ��, (36)

where W, b, and H represent the weight matrix, the
deviation vector and the hidden layer function
respectively. The hidden layer function of LSTM is
calculated by the following equations:
�� = ������� ������−1 ������−1 � �� , (37)

�� = ������� ������−1 ������−1 �

�� ,
(38)

�� = ����−1 � ��tanh ������ ������−1 �
�� ,

(39)

h� = ����h�� ���h��−1 ���h��−1 �
�h ,

(40)

�� = h�tanh ��� , (41)

��，��，h�，�� and ��represent input gate, forget gate,
output gate and long unit activation vectors, and short
unit activation vectors, respectively. The improved
feature extraction and classification method of the
min-VGGnet and LSTM hybrid structures named
min-VGG-LSTMnet in this paper. As shown in Figure 6:

Figure 6. CNN combined with LSTM hybrid
network min-VGG-LSTMnet

The hybrid structure still uses the structure of
min-VGGnet, but the convolutional layer in the
min-VGGnet is included in the three-layer stack structure.
The first layer is a two-layer stack structure of 32
convolution kernel sizes [3×3], denoted as C1. The
second layer is a two-layer stack structure of 64
convolution kernel sizes [3×3], denoted as C2. The third
layer is a single-layer structure of 128 convolution kernel
sizes [3×3], denoted as C3. LSTM needs to capture
different time-mode features across multiple frames,
corresponding to three structures of time unit. The inputs
at t-1, t, and t+1 are from the features of shallow, deeper,
and deep layers of the min-VGGnet structure,
respectively. Each layer in min-VGGnet passes through
the largest pooling layer and is transformed into a vector
through the reshape layer as the structure of input of the
LSTM network, which realizes serial fusion. Finally,
LSTM layer and the layer formed by 128 cells get
the best results. In the model, a 1-D Conv layer should be
added after the output of min-VGGnet. Then
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parallelizing the output of the 1-D Conv layer with the
output of LSTM. Changing the dimension of the input
data through the reshape layer, without the dimension of
the sample number (batch size). After fusion, putting
them together into the fully connected layer. The fully
connection layer still adopts a two-layer stack structure.
The first layer is a tile structure, which becomes a 1×512
vector through a fully connected layer. According to the
number of num_classes required by the sample label,
determining the final number of classifications. Finally
entering the Softmax layer and completing the final

classification.
3. Results

To make the comparison of classification results
more intuitive, this paper summarized the values of best
cross-entropy loss and classification accuracy of all the
above classification models. All experiments are
performed on the same computer, which operating
system is Win10, 64 bit, CPU is 1.80GHz, RAM is 8GB.
The comparison of the results of the network model of
the four- classification task of motor imagery is shown in
Table 5:

Table 5. Performance comparison of different classification models under four classification tasks

Network model Training Loss Val Loss Training ACC Val ACC Time(h)

EEGnet 0.5979 0.5965 0.6317 0.6776 2.32

CNN-2net 0.4018 0.5307 0.8291 0.7754 3.54

min-VGGnet 0.4177 0.5262 0.9908 0.8312 3.91

min-VGG-LSTMnet 0.3458 0.4974 1.0 0.9130 4.16

As can be seen from Table 5, the
min-VGG-LSTMnet has better performance in the
four-classification task, and the classification accuracy of
the training set and the verification set is higher. The
results show that the accuracy of the proposed method is
at least 8.18% higher than that of the traditional deep
learning method. When the epoch takes 1000 times, the

hybrid network model takes more time, but the
difference is not big in general.

In order to verify the effectiveness of the proposed
method, this paper compared the previous method with
the method proposed in this paper. The results are shown
in Table 6:

Table 6. Comparison of different classification models under four classification tasks

Classification Method Data Set
Maximum
Accuracy

Average Accuracy

References Fisher+SVM BCI Competition III 85.7% 80.95%

References CSP+SVM
Self-collected four-class
task data set

86.3% 80.66%

proposed method
min-VGG-LSTMnet

collected four-class task
data set

88.56% 81.52%

It can be seen from the above table that the
proposed method min-VGG-LSTMnet has a
classification accuracy of 88.56% on the test set, which

is at least 2.26% higher than the method in the literature.
Two-dimensional time-frequency analysis combined
with Fisher analysis is used to extract the features of the
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imaginary movements of the left hand, right hand, foot
and tongue in the BCI competition data set, and SVM is
used to recognize, which achieves an accuracy rate of
85.7%. A self-collected dataset, which contains the EEG
features of the four types of motor imagery tasks of the
upper, lower, left and right spheres of the ball. Feature
extraction and classification of four types of motor
imagery EEG signals use CSP combined with SVM. The
highest accuracy is 86.3%. The dataset of this paper is a
self-collected data set of four types of motions:
left-handed lifting, right-hand lifting, left-foot lifting and
right-foot lifting. The min-VGG-LSTMnet network
model is used to identify and predict four types of tasks.
The highest accuracy is 88.56%.

In summary, the min-VGG-LSTMnet hybrid deep
learning network designed in this paper not only realized
the four-classification task of motor imagery EEG
signal, but also improved the classification accuracy by
at least 8.18%, and reduced the loss value by at least
0.0288 compared with the mainstream deep-learning
method.
4. Discussion

This paper provides an important technical support
for the realization of the brain-computer interface
through the feature extraction and classification of motor
imagery EEG signals, which has great research
significance and application value in the fields of
medical rehabilitation and new generation
human-computer interaction.

The main recommendations and prospects of this
paper are as follows:

(1) In the future, the complexity of
multi-classification tasks can be further studied in order
to obtain more representative motor imagery EEG signal,
and the classification algorithm should be enhanced to
discriminate between different classification tasks.

(2) The EEG signal is very weak, and it is necessary
to continue to explore its intrinsic properties and find
a better method of feature extraction. It is not only
limited to the feature extraction of motor imagery EEG
signal, but also suitable for feature extraction of other
types of EEG signal.

(3) At present, the deep learning network is not very
good at classifying small data sets. Compared with the
simpler model, the advantage of deep learning is that

there are enough data to adjust a large number of
parameters. However, when the data set is small, there
will be overfitting problem. It is hoped that in the future,
high-precision classification of small data sets can be and
realized.

(4) The classification task could not be performed in
real time in this paper. Because the collected data need
preprocessing and feature extraction offline. Due to the
high complexity of the algorithm, it is impossible to
achieve real-time at present, which is one of the
important directions for future research. Real-time
pre-processing software integration is required to achieve
real-time classification.
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