



# The Clinical Efficacy and Safety of Intramedullary Nailing for Traumatic Fractures of the Femur and Tibia: A Retrospective Cohort Study

Weiqliang Cheng, He Li, Dingguo Zhu

Guangzhou Heping orthopedic hospital, Guangzhou 510000, Guangdong, China

**Abstract:** Intramedullary nailing is the standard for stabilizing femoral and tibial diaphyseal fractures. This study evaluated its effectiveness and safety in adults with traumatic long-bone injuries. Methods: Retrospective cohort of adult inpatients treated at a single center (January 2021–July 2024). Demographics, fracture features, intraoperative variables, and outcomes were extracted from electronic records. Primary endpoints were 6-month radiographic union and overall postoperative complications. Secondary endpoints included time to union, time to full weight-bearing, 12-month Lower Extremity Functional Scale (LEFS), and specific complications. Results: A total of 100 patients (65 males and 35 females) with 155 fractures (85 femoral and 70 tibial) were analyzed. Union at 6 months was achieved in 145/155 fractures (93.5%); mean time to union was  $16.8 \pm 4.5$  weeks. Overall complications occurred in 25/155 fractures (16.1%), most commonly delayed union (5.2%), superficial infection (3.9%), and malunion (3.2%); deep infection occurred in 1.9%. The mean 12-month LEFS was  $70.5 \pm 9.8$ . Conclusion: Intramedullary nailing yields high union rates, acceptable complication profiles, and good functional recovery in femoral and tibial shaft fractures, supporting its continued use as standard care.

**Keywords:** intramedullary nailing, long bone fracture, femur fracture, tibia fracture, clinical outcome, fracture healing

## 1. Introduction

Traumatic long-bone fractures, particularly of the femur and tibia, are major causes of morbidity and functional impairment [1]. Femoral fractures typically result from high-energy trauma and are frequently associated with systemic injuries [1]. Management priorities are rigid fixation, restoration of alignment and limb length, and early mobilization to limit immobilization-related complications and promote recovery [2].

Since Küntscher, intramedullary (IM) nailing has reshaped fracture care [1]. As a load-sharing device within the medullary canal, it resists angular, translational, and torsional stresses, promoting secondary (callus) healing and early weight-bearing [3]. IM nailing is the preferred treatment for adult femoral and tibial diaphyseal fractures [1,4]. Advantages include minimal invasiveness, reduced blood loss, preservation of periosteal/endosteal perfusion, and high union rates [5]. Complications include infection, malalignment/malunion, delayed/nonunion, implant failure, and neurovascular injury. Reported nonunion rates are 2.6%–16% (tibia) and 0.9%–6% (femur); infection is ~1.1%–6.9% for the tibia and slightly lower for the femur.

We retrospectively evaluated the clinical efficacy and safety of IM nailing for traumatic femoral and tibial diaphyseal fractures at our institution.

## 2. Materials And Methods

### 2.1 Study Design and Patient Population

Single-center retrospective cohort with IRB approval and consent waiver. Consecutive adults ( $\geq 18$  years) with traumatic diaphyseal femur or tibia fractures (AO/OTA 32-A/B/C or 42-A/B/C) treated by intramedullary nailing from January 2021 to July 2024 were included; minimum follow-up, 12 months. Exclusions: pathological or periprosthetic fractures; substantial metaphyseal/intra-articular extension requiring adjunct fixation; incomplete records or follow-up  $< 12$  months.

### 2.2 Surgical Technique

Fellowship-trained trauma surgeons performed antegrade femoral nailing on a fracture table and suprapatellar or infrapatellar tibial nailing per fracture morphology. The canal was reamed in most cases; a statically locked titanium nail of appropriate size was implanted. Standardized antibiotic prophylaxis, pharmacologic VTE prevention, and rehabilitation from postoperative day 1 were used. Weight-bearing progression was individualized by fixation stability, fracture characteristics, and patient factors.

## 2.3 Data Collection and Outcome Measures

Data from EMR and PACS included age, sex, injury mechanism; fracture site (femur/tibia), AO/OTA pattern, Gustilo–Anderson grade; time to surgery, operative duration, and estimated blood loss.

(1) Efficacy endpoints: primary — radiographic union at 6 months (bridging callus across  $\geq 3/4$  cortices on orthogonal radiographs); time to union; LEFS (0–80) at 12 months; time to full weight-bearing (independent ambulation without pain/assistive devices).

(2) Safety endpoints: healing complications — nonunion (no union by 9 months or no progression), delayed union (no union by 6 months), malunion ( $>5^\circ$  coronal,  $>10^\circ$  sagittal/rotation, or limb-length discrepancy  $>1.5$  cm); surgical-site infection (superficial vs deep); implant-related events (hardware failure or symptomatic implants requiring unplanned removal); other adverse events (compartment syndrome, iatrogenic nerve palsy, venous thromboembolism)

## 2.4 Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics, version 28.0 (IBM Corp., Armonk, NY, USA). Continuous variables were summarized as mean  $\pm$  standard deviation (SD), whereas categorical variables were expressed as frequencies and percentages.

## 3. Results

### 3.1 Patient and Fracture Characteristics

The study included 100 patients with 155 fractures. The mean age was 38.5 years, and 65.0% were male. Motor vehicle accidents were the most common mechanism (63.0%). Of the fractures, 54.8% were femoral, and 20.6% were open (Table 1).

### 3.2 Clinical Efficacy Outcomes

At 6 months, 93.5% (145/155) of fractures achieved radiographic union. The mean time to union was 16.8 weeks. The mean 12-month LEFS score was  $70.5 \pm 9.8$  (Table 1).

### 3.3 Safety and Complications

Complications in 22 patients (25/155, 16.1%): delayed union 8 (5.2%), nonunion 3 (1.9%; exchange nailing  $\pm$  graft), malunion 5 (3.2%; predominantly rotational), superficial infection 6. The overall complication rate was 16.1% (25/155 fractures). This included delayed union (5.2%), nonunion (1.9%), malunion (3.2%), superficial infection (3.9%), and deep infection (1.9%) (Table 1).

**Table 1. Baseline Characteristics, Clinical Outcomes, and Postoperative Complications**

| Category                              | Variable                                           | Value                                                                 |
|---------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|
| Patient-level (N = 100)               | Age (years), mean $\pm$ SD                         | $38.5 \pm 15.2$                                                       |
|                                       | Sex, n (%)                                         | Male 65 (65.0)<br>Female 35 (35.0)                                    |
|                                       | Mechanism of injury, n (%)                         | Motor vehicle accident 63 (63.0)<br>Fall 27 (27.0)<br>Other 10 (10.0) |
| Fracture-level (n = 155)              | Fractured bone, n (%)                              | Femur 85 (54.8)<br>Tibia 70 (45.2)                                    |
|                                       | AO/OTA type, n (%)                                 | A 85 (54.8)<br>B 53 (34.2)<br>C 17 (11.0)                             |
|                                       | Open fracture, n (%)                               | 32 (20.6)                                                             |
| Efficacy outcomes                     | Union at 6 months, n/N (%)                         | 145/155 (93.5)                                                        |
|                                       | Time to union (weeks), mean $\pm$ SD               | $16.8 \pm 4.5$                                                        |
|                                       | Time to full weight-bearing (weeks), mean $\pm$ SD | $12.5 \pm 3.8$                                                        |
|                                       | LEFS at 12 months, mean $\pm$ SD                   | $70.5 \pm 9.8$                                                        |
| Complications (per fracture, n = 155) | Total complications, n (%)                         | 25 (16.1)                                                             |
|                                       | Delayed union, n (%)                               | 8 (5.2)                                                               |

| Category | Variable                     | Value   |
|----------|------------------------------|---------|
|          | Nonunion, n (%)              | 3 (1.9) |
|          | Malunion, n (%)              | 5 (3.2) |
|          | Superficial infection, n (%) | 6 (3.9) |
|          | Deep infection, n (%)        | 3 (1.9) |
|          | Implant-related, n (%)       | 3 (1.9) |

Notes: Patient-level variables are summarized by patients (N=100); fracture-level variables are summarized by fractures (N=155). Complications occurred in 22 patients, involving 25 fractures. The Lower Extremity Functional Scale (LEFS) is a patient-level outcome measure. LEFS = Lower Extremity Functional Scale; FWB = full weight-bearing.

## 4. Discussion

Our findings reaffirm that intramedullary nailing is a highly effective treatment for femoral and tibial diaphyseal fractures. The 93.5% union rate at 6 months aligns with large clinical series, and the mean time to union of approximately 17 weeks reflects the expected course of secondary healing with a load-sharing implant.

Modern fracture care prioritizes functional restoration. The mean 12-month LEFS score of 70.5 indicates that most patients achieve near-normal lower extremity function [2]. However, residual deficits, such as quadriceps weakness after femoral nailing, remain relevant and underscore the need for targeted rehabilitation.

The overall complication rate of 16.1% is comparable to published reports [4,5]. Notably, the nonunion rate of 1.9% is at the lower end of the reported spectrum, a finding likely attributable to standardized techniques, including reamed nailing, which promotes higher union rates. Malunion (3.2%) continues to be a technical challenge, particularly in maintaining rotational alignment in multifragmentary fractures. The deep infection rate of 1.9% is consistent with accepted standards, reinforcing the importance of strict adherence to aseptic protocols. The primary limitations of this study are its retrospective, single-center design and the absence of a control group.

## 5. Conclusion

This analysis confirms that intramedullary nailing for femoral and tibial diaphyseal fractures provides excellent clinical and functional outcomes, with high union rates and a low incidence of major complications. These findings reinforce IM nailing as the gold standard for these injuries.

## References

- [1] Kisan D, Samant S. A comparison of closed intramedullary nailing with open intramedullary nailing in femoral shaft fractures of adults[J]. International Journal of Orthopaedics Sciences, 2018, 4(2): 88-90.
- [2] Larsen P, Eriksen C B, Stokholm R, et al. Results following prolonged recovery show satisfactory functional and patient-reported outcome after intramedullary nailing of a tibial shaft fracture: a prospective 5-year follow-up cohort study[J]. Archives of orthopaedic and trauma surgery, 2021, 141(8): 1303-1310.
- [3] Sigurdsen U E W, Reikeras O, Utvag S E. External fixation compared to intramedullary nailing of tibial fractures in the rat[J]. Acta orthopaedica, 2009, 80(3): 375-379.
- [4] Chapman M W. The effect of reamed and nonreamed intramedullary nailing on fracture healing[J]. Clinical Orthopaedics and Related Research, 1998, 355: S230-S238.
- [5] Petrova N, Svensson A, Narayan A. Comparative Analysis of Intramedullary Nailing versus Plating in Long Bone Fractures[J]. 2025.1(02):10-13.