

Can Volatility Risk Premia Improve Fama-French Three-Factor Model in the Explanation of Stock Index Returns? — Evidence from US Industrial Stock Indices

Jihui Chen

Guangdong Nanhua Vocational College of Industry and Commerce, Guangzhou, Guangdong, China DOI: 10.32629/memf.v4i3.1376

Abstract: In this dissertation, the author studies the volatility risk premia (i.e., the difference between implied volatility and realized volatility), which is documented in recent literature as a risk factor to explain equity returns. The author empirically tests the Fama-French three-factor model and the multifactor asset pricing model involving volatility risk premia in three industrial market index returns in the US market – motorcar, IT and banking industries. It is found that adding volatility risk premia to Fama-French model can improve the explanation of cross-sectional stock index returns. This finding is consistent with Bollerslev et al.[1] in which volatility risk premia consistently explains stock returns. *Keywords:* volatility risk premia, fama-french three-factor model, stock index returns

1. Introduction

Is the return on the stock market predictable? This question has been debated in theoretical and empirical studies for a long time with various findings. For instance, The Capital Asset Pricing Model (CAPM hereafter) use market portfolio return to explain stock return. However, the validity of CAPM has been challenged since it was introduced as empirical evidence shows that CAPM fails to capture some other sources of systematic risk. Fama and French[2] introduce size and book-to-market ratio risk factor into CAPM. The Fama-French three-factor model (FF, hereafter) is an empirical model based on the Arbitrage Pricing Theory (APT). According to APT, there are various sources of systematic risk should be considered in asset pricing, where market portfolio return (the one used in CAPM) is not the only one factor capturing the whole systematic risk. However, APT does not identify the exact sources of systematic risk, giving rooms to improve the multifactor asset pricing model, such as FF.

The aim of this dissertation is to compare the FF model with the other multifactor model involving volatility risk premia $(IV_t - RV_t)$. The author wants to investigate if adding $(IV_t - RV_t)$ can improve FF model in the explanation of stock index return in industrial level. The risk factors taken into account include: (1) the excess market index return, Rm - Rf. (2) Small stock return minus big stock return, SMB_t. (3) the high book-to-market ratio stock returns minus the low book-to-market ratio stock returns, HML_t . (4) realized volatility, RV_t , (5) implied volatility, IV_t , and (6) the volatility risk premia, $(IV_t - RV_t)$.

The author investigates whether the volatility risk premia can explain industrial index returns with comparison to FF model in three US industrial index returns – motorcar, IT and banking. It's found that adding volatility risk premia to FF model can improve the explanation of stock index returns in terms of adjusted R^2 s in three industries. Besides, including realized volatility to FF model increases adjusted R^2 s as well. The findings confirm that there are other risk factors can explain stock returns apart from FF three factors, in particular, volatility risk premia has consistent performance to explain stock returns.

2. Literature review

2.1 The CAPM model

Jack Treynor[3], John Lintner[4] and Jan Mossin[5] advanced the CAPM model. It works as follows:

$$E(r_i) = r_f + B_{im} \left(E(r_m) - r_f \right)$$
(i)

Where $E(r_i)$ is the expected return of the capital asset. r_f is the risk-free rate of interest. β_{im} is the systematic market risk. $E(r_m)$ is the expected return of the market. $(E(r_m) - r_f)$ is the expected market rate of return minus the risk-free rate of return (market premium).

2.2 The Fama French three-factor model

Since more and more scholars criticized the SLB CAPM model, such as Roll and Ross[6], who found that beta is not the sole determinant of risk. Lakonishok and Shapiro[7] pointed out that the return rate will be influenced by the unsystematic risks and Fama French[8] proved that there isn't significant relationship between beta and the cross-section of average returns. Therefore, for the past few years, Fama French three-factor model has been widely used since it has increased the explanatory power of the returns. The FF model is based on the Aribitrage Pricing Theory (APT) which is propounded by Ross[9].

The FF model works as follows:

$$r_{t} = \alpha + \beta \left[\left(r_{m} - r_{f} \right)_{t}, SMB_{t}, HML_{t} \right] + \varepsilon_{t}$$
(ii)

As we can see, FF shows that the risk premium is related to three factors which are (1) the expected market rate of return minus the risk-free rate of return (market premium), (2) small market capitalization minus big market capitalization (SMB_i) and (3) the high book-to-market ratio minus the low book-to-market ratio (HML_i).

3. Model

To explore the improvement of volatility risk premia in the Fama French three-factor model for the explanation of crosssectional industrial stock returns in the US market, four models will be implemented in this section. Firstly, the standard three-factor model is used as the baseline to be compared. Then, we import IVt and RVt in the model separately to investigate whether they have statistical significance on the industrial stock returns. Lastly, the variable (IVt - RVt) is introduced in the three-factor model under the prerequisite that both of the variables have effects on the dependent variable. The software utilized to this problem is Stata which widely used for statistical data analysis in the various field.

The four regression models are:

$$R_{t} = \alpha + \beta [Rm - Rf)_{t}, SMB_{t}, HML_{t}] + \varepsilon_{t}$$
⁽¹⁾

$$R_{t} = \lambda + \gamma' \Big[(Rm - Rf)_{t}, SMB_{t}, HML_{t}, (IV_{t} - RV_{t}) \Big] + \mu_{t}$$
⁽²⁾

$$R_{t} = \lambda + \gamma' \Big[(Rm - Rf)_{t}, SMB_{t}, HML_{t}, RV_{t} \Big] + \mu_{t}$$
⁽³⁾

$$R_{t} = \lambda + \gamma' \Big[\big(Rm - Rf \big)_{t}, SMB_{t}, HML_{t}, IV_{t} \Big] + \mu_{t}$$

$$\tag{4}$$

where

 $R_{\rm i}$: the industrial index excess return, i.e., the industrial index return minus the US 3-month Tbill rate.

Rm - Rf: the S&P500 index excess return, i.e., the S&P 500 index return minus the US 3-month Tbill rate.

 SMB_{t} : the Fama-French size factor.

*HML*_{*t*} : the Fama-French book-to-market factor.

 $(IV_t - RV_t)$: the volatility risk premia.

 IV_t : the VIX index, a proxy of implied volatility of S&P500.

 RV_i : the realized volatility of S&P500. It is the sum of the squared daily returns over one period t: $RV = \frac{1}{n_t} \sum_{l=1}^{n_t} r_l^2 \times 252$.

Where $r_l = \log(S_l / S_{l-1})$ is the closing price of market index on ℓ th trading day of month t, and n_l is the number of trading days in month t. The RV is annualized by 252 trading days.

All the variables in the four models are annualized.

As we can see, the model (1) is the original Fama French three-factor model. The three others are the models in which we separately put the IV_t , RV_t and $IV_t - RV_t$ into the original model to form a new model. We expect that the prediction of volatility risk premia in the FF model for the explanation of cross-sectional industrial stock returns can be improved.

We assume the three new models can improve the traditional Fama French model at some extent. And then, the value of Adjusted R-square in each model is used as the index which gives us the information of improvement. Finally, the model which has the highest Adjusted R-square will be treated as the best model.

4. Data

According to the description of the model in the last section, we need to obtain R_p , Rm - Rf, SMB_p , HML_p , IV_p , RV_p for the sake of analyzing. The data used for empirical analysis are the time series of 215 months, ranging from January 2000 to December 2012 and involving S&P500 automobiles, S&P500 banks and S&P500 IT industries.

More specifically, the monthly data of total return index R_i is calculated by the formula:

$$R_{t} = \ln\left(\frac{P_{t}}{P_{t-1}}\right) * 100 - R_{ft}$$
(iii)

Where the proxy for risk free return R_{fi} is the one-month Treasury bill rate from Fama-French data library, P_i is the price index from the Datastream of University of Essex. It should be noted that the number of the sample turns to 214 since R_i should be calculated by the lag of the price index.

The total return index of automobiles, IT industries and banks (car_rf, bank_rf and it_rf) are the dependent variables of the model, which have the characteristics as shown in the table below.

Table 1. The summary of total return index in three industries

	Tuble 1. The summary of courrection much in enree multiples
Variable	Obs Mean Std. Dev. Min Max
car_rf	2142788059 10.81975 -59.46552 59.52686
bank_rf	2140733571 8.306055 -45.50499 21.616
it_rf	2140885885 10.76104 -55.07973 20.45957

The three factors of Fama-French model including Rm - Rf, SMB_t and HML_t are downloaded from the data library of Kenneth R. French, which is a website containing the Benchmark Returns for month quarter and year, with historical returns back to 1926.

The Implied Volatility of the market portfolio at month t (IV_t) is from the CBOE website, which is a measure of the expected volatility calculated as 100 times the square root of the expected 30-day variance (var) of the S&P 500 rate of return as said on its website. It can be written as follows:

Volatility Index =
$$100\sqrt{\frac{365}{30}} \times \sum_{i=1}^{30} \sigma_i^2$$
, where σ_i^2 the S&P 500 rate of return in time i

In terms of RV_t (Realized Volatility), the data available is given on daily and weekly format. But what we need to analyze in this thesis should be by monthly, hence, it is necessary to do some calculations on the original data. Carr and Wu[10] use the sum of the squared daily returns during one period to calculate the monthly Realized Volatility. The equation is:

$$RV_t = \frac{1}{n_t} \sum_{l=1}^{n_t} r_l^2 \times 252$$
, where RV_t is the Realized Volatility on month t, n_t is the total days of trading in month t. They

also gave the conclusion that there is no difference from how to calculate the total days of a year. Both the actual days 365 and the business days 252 can be used. In this article, we use the actual days 365 instead. The summary of this variables are list in Table 2.

Variable	Obs	Mean	Std. Dev.	Min	Max
car_rvol	214	36.27415	21.19377	12.01027	159.8856
bank_rvol	214	31.65821	26.95641	7.984671	169.8559
it_rvol	214	39.79348	22.26967	8.900942	197.181

Table 2: The summary of realized volatility in the three industries

5. Empirical Analysis

The four models mentioned before will be utilized in this chapter to do the empirical analysis. Three subsections are included to correspond to the three industries analyzed. In each part, the four models will be written based on the data described on the last chapter. Then, the F-values, R-squares and Adjusted R-squares are listed in the table to make a comparison

of the models. As a result, we will find out which model improves the FF model best in each case.

5.1 The result of car industry

For the classic three-factor model:

$$R_{t} = -0.8038 + 0.3603(Rm - Rf)_{t} + 0.3648SMB_{t} + 0.9518HML_{t} + \varepsilon_{t}$$

$$(0.7214) \quad (0.1598) \quad (0.2156) \quad (0.2267)$$

$$Adj \; R^2 = 0.07$$

car_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	.3603418	.1598048	2.25	0.025	.0453147 .6753689
smb	.3647921	.2156082	1.69	0.092	0602417 .7898259
hml	.9518013	.2267186	4.20	0.000	.5048653 1.398737
_cons	8038264	.7214129	-1.11	0.266	-2.225965 .6183126

For the new model with variable $(IV_t - RV_t)$

We can obtain the model below from Stata, which shows a significant positive estimate for each coefficient from January 2000 to December 2012 in the field of automobiles.

 $R_{t} = 1.4020 + 0.2894(Rm - Rf)_{t} + 0.3293SMB_{t} + 0.8729HML_{t} + 0.1461(IV - RV)_{t} + \varepsilon_{t}$ (0.9679) (0.1576) (0.2109) (0.2227) (0.0440)

Adj $R^2 = 0.12$

Table 4: The result of regression	for model with varia	able $(IV_t - RV_t)$ in automobiles
-----------------------------------	----------------------	-------------------------------------

car_rf	Coef.	Std. Err.	Т	P> t	[95% Conf. Interval]
mkt_rf	0.289438	0.157562	1.84	0.0680	0211771 .6000528
smb	0.329258	0.210897	1.56	0.1200	0864998 .7450166
hml	0.872898	0.222748	3.92	0.0000	.4337776 1.312018
car_vrp	0.146127	0.043955	3.32	0.0010	.0594756 .2327787
_cons	1.401974	0.967934	1.45	0.1490	5061909 3.310138

For the new model with variable RV_t

 $R_{t} = 3.5328 + 0.2173(Rm - Rf)_{t} + 0.3186SMB_{t} + 0.8238HML_{t} - 0.1162RV_{t} + \varepsilon_{t}$ (1.4617) (0.1616) (0.2109) (0.2245) (0.0343)

Adj	R^2	=	0.	12

Table 5: The result of regression for model with variable RVt in automobiles

Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
.217349	0.161586	1.35	0.1800	1011976 .5358953
.318637	0.210872	1.51	0.1320	0970722 .7343452
.823801	0.224482	3.67	0.0000	-0.1838854 -0.0485395
0.11621	0.034328	-3.39	0.0010	-0.1838854 -0.2324249
.532813	1.461738	2.42	0.0170	.6511731 6.414453
	Coef. .217349 .318637 .823801 0.11621 .532813	Coef. Std. Err. .217349 0.161586 .318637 0.210872 .823801 0.224482 0.11621 0.034328 .532813 1.461738	Coef. Std. Err. t .217349 0.161586 1.35 .318637 0.210872 1.51 .823801 0.224482 3.67 0.11621 0.034328 -3.39 .532813 1.461738 2.42	Coef. Std. Err. t P> t .217349 0.161586 1.35 0.1800 .318637 0.210872 1.51 0.1320 .823801 0.224482 3.67 0.0000 0.11621 0.034328 -3.39 0.0010 .532813 1.461738 2.42 0.0170

For the new model with variable IV_t

$R_{t} = 3.9209 + 0.2019(Rm - Rf)_{t} + 0.3320SMB_{t} + 0.8324HML_{t} - 0.2126IV_{t} + \varepsilon_{t}$ (2.2918) (0.1744) (0.2143) (0.2314) (0.0980)

Adj $R^2 = 0.09$

Table 6: The result of regression for model with variable IVt in automobiles

car_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	0.201892	0.174432	1.16	0.2480	1419796 .5457639
smb	0.33205	0.214261	1.55	0.1230	0903409 .7544398
hml	0.832422	0.231379	3.6	0.0000	.3762867 1.288557
iv	-0.21262	0.097986	-2.17	0.0310	-0.4057877 -0.0194528
_cons	3.920897	2.291815	1.71	0.0890	5971399 8.438934

Comparison of the models

Table 7: The comparison of the model in automobiles

Method	Model 1	Model 2	Model 3	Model 4
F value	6.90	8.19	8.30	6.45
Prob>F	0.0002	0.0000	0.0000	0.0001
Root MSE	10.396	10.156	10.146	10.306
R-square	0.0898	0.1355	0.1371	0.1098
Adjusted R-square	0.0768	0.1190	0.1206	0.0928

5.2 The result of the bank industry

For the classic three factor model:

 $R_{t} = -0.3301 + 0.1447(Rm - Rf)_{t} + 0.3485SMB_{t} + 0.3792HML_{t} + \varepsilon_{t}$ (0.5697) (0.1262) (0.1703) (0.1790)

Adj $R^2 = 0$	0.02
---------------	------

bank_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	0.144695	0.126194	1.15	0.0530	104075 .3934652
smb	0.348453	0.170261	2.05	0.0420	.012813 .6840931
hml	0.379184	0.179035	2.12	0.0350	.0262487 .7321201
_cons	-0.33013	0.569684	-0.58	0.5630	-1.453162 .7929031

For the new model with variable (IVt - RVt)

 $R_{t} = 0.7245 + 0.0939(Rm - Rf)_{t} + 0.3239SMB_{t} + 0.2905HML_{t} + 0.0997(IV_{t} - RV_{t}) + \varepsilon_{t}$ (0.6130) (0.1228) (0.1648) (0.1747) (0.0254)

Adj R²= 0.09

Coef. Std. Err. [95% Conf. Interval] bank rf P > |t|t 0.093913 mkt rf 0.122755 0.77 -.148084 .3359104 0.4450 smb 0.323888 0.164818 1.97 0.0510 -.0010319 .6488072 0.174652 0.290526 0.0980 -.0537795 .6348312 hml 1.66 0.099654 0.025376 3.93 0.0000 .0496279 .14968 bank_vrp 0.613034 0.2390 -.4839852 1.933059 0.724537 1.18 cons

Table 9: The result of regression for model with variable (IVt - RVt) in bank industry

For the new model with variable RVt

$$R_{t} = 2.5579 + 0.0342(Rm - Rf)_{t} + 0.3132SMB_{t} + 0.2514HML_{t} - 0.0880IV_{t} + \varepsilon$$
(0.8735) (0.1241) (0.1640) (0.1748) (0.0207)

Adi	$R^2 =$	0.	10
1 1 4	1 1 2	•••	10

Table 10: The result of regression for model with variable RV_t in bank industry

bank_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	0.034227	0.124129	2.28	0.0830	2104783 .2789319
smb	0.313194	0.163964	1.91	0.0570	0100405 .6364292
hml	0.251432	0.174801	1.44	0.0520	0931672 .596032
bank_rvol	-0.08804	0.020737	-4.25	0.0000	-0.1289166 -0.0471558
_cons	2.557871	0.873482	2.93	0.0040	.8359055 4.279836

For the new model with variable IV_{t}

 $R_{t} = 5.7037 - 0.0577(Rm - Rf)_{t} + 0.3066SMB_{t} + 0.2267HML_{t} - 0.2715IV_{t} + \varepsilon_{t}$ (1.7766) (0.1352) (0.1661) (0.1793) (0.0760)

Adj $R^2 = 0.08$

Table 11: The result	t of regression	for model with	variable IV, in	bank industry

bank_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	-0.05766	0.135216	-0.43	0.6700	3242176 .208905
smb	0.306638	0.16609	1.85	0.0660	0207886 .6340654
hml	0.226729	0.179359	1.26	0.2080	1268567 .5803139
iv	-0.27153	0.075956	-3.57	0.0000	-0.4212699 -0.1217922
_cons	5.703675	1.776561	3.21	0.0020	2.2014 9.205951

Comparison of the models

Table	12:	The	comparison	ı of	the	model	in	bank	indust	ry
-------	-----	-----	------------	------	-----	-------	----	------	--------	----

Method	Model 1	Model 2	Model 3	Model 4
F value	2.68	6.00	6.68	5.32
Prob>F	0.0480	0.0001	0.0000	0.0004
Root MSE	8.2096	7.9414	7.8958	7.9886
R-square	0.0369	0.1030	0.1133	0.0924
Adjusted R-square	0.0231	0.0859	0.0963	0.0750

According to the R-squares of each model, the fitness of model 3 is the best, since it can explain 11.33% variation for the bank industry returns. Correspondingly, the adjusted R-square is the largest one of all as well. The conclusion that model

3 is the best one can also be made from the Root MSE, which represents the root of mean standard error of the model, being the smallest one (with a value of 7.8958).

According to the adjusted R-squares, the model with $(IV_t - RV_t)$ and the model with IVt are the two best models among the four. They improve the adjusted R-square of FF model from 0.2 to 0.859 and 0.2 to 0.0963 respectively. That means the model with $(IV_t - RV_t)$ improve the explanation of the multifactor model to stock index return.

5.3 The result of the IT industry

For the classic three-factor model:

 $R_{t} = -0.4822 + 0.1059(Rm - Rf)_{t} + 0.6947SMB_{t} + 0.6807HML_{t} + \varepsilon_{t}$ (0.7263) (0.1609) (0.2171) (0.2283)

Adj $R^2 = 0.05$

Table	13.	The re	sult of	regressi	ion for	Fama_	French	model	in IT	industry
Table	15.	The re	suit oi	regressi	101 101	гаша-	rrenth	mouer		muusu y

it_rf	Coef.	Std. Err.	t	$P \ge t $	[95% Conf. Interval]
mkt_rf	0.105942	0.160889	0.66	0.0110	2112226 .4231061
smb	0.694653	0.217071	3.2	0.0020	.2667356 1.12257
hml	0.680669	0.228257	2.98	0.0030	.2307003 1.130637
_cons	-0.48222	0.726307	-0.66	0.5070	-1.914007 .9495679

For the new model with variable $(IV_t - RV_t)$

 $R_{t} = 1.0195 + 0.0273(Rm - Rf)_{t} + 0.6869SMB_{t} + 0.6542HML_{t} + 0.0799(IV_{t} - RV_{t}) + \varepsilon_{t}$ (0.9955) (0.1635) (0.2152) (0.2266) (0.0366)

Adi	$R^2 =$	0.	07
1 1 1 1	11/	· • •	01

T-11. 14. The	14 . f	f		DV4) : I	T in decedar
Table 14: The resu	III of regression	tor model with	variable (1 v t	- KVD IN I	I Industry
14010 1 11 1110 1000	ne or regression				

it_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	0.02728	0.163481	0.17	0.0680	2950024 .349562
smb	0.686929	0.215177	3.19	0.0020	.2627332 1.111126
hml	0.654156	0.22656	2.89	0.0040	.207519 1.100792
it_vrp	0.07989	0.036579	2.18	0.0300	.0077801 .1520005
_cons	1.019504	0.995481	1.02	0.3070	9429669 2.981975

For the new model with variable RV_t

 $R_{t} = 2.8987 - 0.0366(Rm - Rf)_{t} + 0.6740SMB_{t} + 0.6070HML_{t} - 0.0824RV_{t} + \varepsilon_{t}$ (1.5747) (0.1697) (0.2148) (0.2277) (0.0342)

Au = 0.00	Ad	$i R^2 =$	0.08
-----------	----	-----------	------

fable 1	5: Tl	he result	of regression	for model	with	variable	RVt i	n IT	industr
---------	-------	-----------	---------------	-----------	------	----------	-------	------	---------

it_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	-0.03664	0.169697	-0.22	0.8290	3711753 .2978993
smb	0.673992	0.214793	3.14	0.0020	.2505541 1.097429
hml	0.607037	0.227736	2.67	0.0080	.1580837 1.05599
it_rvol	-0.08242	0.034164	-2.41	0.0170	-0.149774 -0.0150726
_cons	2.89868	1.574654	1.84	0.0670	2055608 6.00292

For the new model with variable IV_{t}

$R_{t} = 1.8012 + 0.0294(Rm - Rf)_{t} + 0.6788SMB_{t} + 0.6230HML_{t} - 0.1028IV_{t} + \varepsilon_{t}$ $(2.3272) \quad (0.1771) \quad (0.2176) \quad (0.2350) \quad (0.0995)$

Adj $R^2 = 0.05$

Table 16: The result of regression for model with variable IV_t in IT industry

it_rf	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
mkt_rf	0.029363	0.177131	0.17	0.0680	31983 .3785558
Smb	0.678828	0.217577	3.12	0.0020	.2499019 1.107755
hml	0.622972	0.234959	2.65	0.0090	.1597788 1.086166
iv	-0.10276	0.099502	-1.03	0.3030	2989162 .093397
_cons	1.801245	2.327279	0.77	0.4400	-2.786706 6.389195

Comparison of the models

Table 17: The comparison of the model in IT industry

Method	Model 1	Model 2	Model 3	Model 4
F value	5.05	5.05	5.33	4.06
Prob>F	0.0021	0.0007	0.0004	0.0035
Root MSE	10.467	10.374	10.349	10.465
R-square	0.0673	0.0881	0.0926	0.0720
Adjusted R-square	0.0540	0.0707	0.0752	0.0543

Regression on the data of the IT industry gives the conclusion that model 3 is the best one of the four, since its adjusted R-square is 0.0752 which fits the data of R_i better than the others. From the row of the F-test p-value, model 3 has the smallest one which is 0.0004. That means the joint significance of model 3 is the best compared with the other models, therefore we have evidence to reject the null hypothesis that there is no relationship between the independent variables and the dependent variable. As a consequence, the Volatility Risk Premia improve Fama-French model in the Explanation of Stock Index Returns in the IT industry.

6. Conclusion

In principle, the empirical evidence shows that no matter which new factor we put into the Fama French three-factor model, each of them can improve the prediction of expected returns. But generally speaking, in three industries, the model which is added *RV*, will be better to explain the expected stock return.

All in all, after having tested the data within this 4 models, this thesis provided evidence to show that, IV_t , RV_t and $(IV_t - RV_t)$ can improve the prediction of Fama French three-factor model. However, there is still more work to be done in the future. Because the data we test is only in US stock market, and we only test in three industries.

References

- Tim Bollerslev, George Tauchen, Hao zhaou, 2009. Expected stock returns and variance risk premia. Published by Oxford University Press on behalf of The Society for Financial Studies. February 2009.
- [2] Eugene F. Fama, Kenneth R. French, 1993. Common risk factors in the returns on stocks and bonds. Journals of Financial Economics 33, 3-56.
- [3] Treynor, Jack L. 1962. Toward a Theory of Market Value of Risky Assets. Working Paper. A final version was published in 1999, in Asset Pricing and Portfolio.
- [4] Lintner, John, 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Review of Economics and Statistics, 47 (1), 13-37.
- [5] Mossin, Jan, 1966. Equilibrium in a Capital Asset Market, Econometrica, Vol. 34, No. 4, pp. 768–783.
- [6] Richard Roll, Stephen A. Ross, 1994. On the cross-sectional relation between expected returns and betas. The Journal

of Fianance, Vol. XLIX, NO.1 March 1994, 101-121.

- [7] Josef Lakonishok, Alan C. Shapiro, 1984. Systematic risk, total risk and size as determinants of stock market returns. Journal of Banking and Finance 10 (1986), 115-132.
- [8] Eugene F. Fama, Kenneth R. French, 1992. The cross-section of expected stock returns. The Journal of Fiannce, Vol. XLVII, NO.2 June 1992.
- [9] Stephen A. Ross, 1976. The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory 13, 341-360.
- [10] Carr, P. and Wu, L. (2009) Variance Risk Premiums. Review of Financial Studies, 22, 1311-1341.