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Abstract: In this paper, we study the impact of introducing uncertainty volatility into Asian options pricing, with emphasis 
on the use of Hamilton-Jacobi-Bellman (HJB) equation. The traditional Asian option pricing model usually assumes that vol-
atility is known and constant, but in the actual market, volatility is often uncertain and volatile. This paper first reviews the 
pricing theory of Asian options, and then introduces the hypothesis of uncertain volatility. By constructing the HJB equation 
based on uncertainty volatility, a new pricing method is proposed and verified by numerical simulation. The results show that 
after the introduction of uncertain volatility, the price range of Asian options expands significantly, reflecting higher market 
uncertainty and risk.
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1. Introduction
A weather derivative is a financial contract whose income depends on changes in the underlying meteorological index.

There are also difficulties in pricing weather derivatives. First, the market for weather derivatives is incomplete, as the 
underlying indices (e.g., temperature, humidity, precipitation, wind, etc.) are not tradable, so there is no transferable price. 
Second, weather models do not follow geometric Brownian motion, so the methods in the existing Black-Scholes framework 
cannot be used directly for pricing weather derivatives[1].In addition, weather contracts are usually generated on some 
cumulative average or total run sum, which creates additional difficulties for practitioners in the weather derivatives market.

Temperature is the most widely used index in the weather derivatives market.Much of the literature [2-3] relates to 
temperature modeling and pricing of temperature derivatives.In these works, the mean regression Ornstein-Uhlenbeck 
process model proposed by Alaton [4] has been widely accepted. In [4], Alaton also developed two approximate formulas 
for heating degree-day (HDD) calls and placed them in cold areas such as Stockholm. However, it should be noted that 
these approximate formulas are of limited use for regions with other climatic conditions, as they are only derived under the 
prerequisite of cold weather.

Until recent years, some methods based on partial differential equations have gradually appeared in temperature derivative 
pricing. Harris [5] established and solved the partial differential equations of cumulative disk and temperature respectively in 
2003,and developed a numerical scheme for the partial differential equation of the Ornstein-Uhlenbeck process with central 
difference to approximate the convective term, and compared this method with actuarial and consumption-based methods 
[6,7]. Broni-Mensah (2012) [8] derived the partial differential equation of weather selection by introducing a hedging tool 
H that is not completely related to temperature. Based on the incomplete hedging strategy, Tangang and Chang [9] proposed 
a weather-selective PIDE (partial integral differential equation) model controlled by mean reversion Brownian motion with 
jump diffusion, and proposed a semi-Lagrangian method for solving PIDE. Li [10] calculates the price of weather derivatives 
by solving the partial differential equation (PDE) of the Ornstein-Uhlenbeck process.

The HJB equation (Hamilton-Jacobi-Bellman equation) plays an important role in finance, especially in optimization 
and dynamic decision problems. It is the core equation of optimal control theory and is used to solve a class of problems 
called Dynamic Programming. By describing how the value of the optimal control strategy evolves over time, it is used to 
deal with portfolio optimization and derivatives pricing.

2. The basic concept of weather derivatives
Weather derivatives are typically structured as swaps, futures and options based on different underlying weather indices. 

In this paper we focus on the analysis of weather derivatives for HDD.
Given a weather station, set max

ix  and min
ix  to be the highest and lowest temperature measured in a day i , respectively. 

The DAT of the i  day is defined as: 
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2.1 The introduction of the HDD 
HDD is the number of times a day when the average temperature is below the baseline temperature.

max{ ,0} ( ) ,i base i base iHDD x x x x += − = −

where basex is the base temperature. Let the contract period consist of n days.The HDD indexes ( )Hy n and ( )Cy n  are

1
( ) ,

n

H i
i

y n HDD
=

= ∑

In continuous form, the above quantities can be expressed as

0( ) ( ) ,t
H base ty t x x dt+= ∫ −

2.2 Weather option
For the HDD put option example,the payoff is

( ( ), ) ( ( )) ,H HP y T T tick K y T += × −

where ( )Hy T  is the value of the HDD index at maturity, k  is the strike level.

For a HDD call option, its payoff is given by
( ( ), ) ( ( ) ) ,H HP y T T tick y T K += × − ( )Hy T , tick and k are the same as the above.

2.3 HJB equation
The HJB equation is used to solve the problem of optimal allocation of a portfolio, especially when the returns and risks 

of a portfolio change over time. Investors want to maximize the expected return of the portfolio under a given level of risk, 
and HJB equation can be used to derive the optimal investment strategy.

3. Weather option’s models
3.1 Temperature models

The basic framework for temperature modeling is based on the Ornstein-Uhlenbeck process

( ) ,m m
t t t t t tdx dx x x dt dWα σ= + − +

Where m
tx is the long-term average of the process, α is the average return rate, tσ is the volatility of the fluctuations, 

tdW is a Brownian increment.

In[11], the mean temperature at time t  takes the following form

sin( ).m
tx A Bt C tω φ= + + +

Its corresponding derivative process with respect to time t is

cos( ).
m
tdx

B C t
dt

ω ω φ= + +
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3.2 PDE of the OU process
Let ( , , )t tV x y t  be the value of a weather option written on these variables tx and ty , where tx  is the average temperature 

ty  is the degree-day index. Additionally, we assume that there is a constant risk-free interest-rate r . The temperature cannot 

be traded, we need to introduce a hedging instrument H that is imperfectly correlated with the temperature, and follows a 
geometric Brownian motion. Thus, the model for our problem is as follows:

,
( )m m

t t t t t t

t t t

dx dx x x dt dW
dt dW

α σ
µ σ=
= + − +

+

1,t H t H tdH H dt H dZµ σ= +

( , ) ,t tdy f x t dt= ,t tdM rM dt=

tµ and tσ  is the temperature fluctuation and drift, Hµ and Hσ  are the drift and volatility of the underlying assets.

Since tdH  is relared to tdW , we can rewerite the Brownian increment tdW  as 2
1 21 ,tdW dZ dZρ ρ= + −  ρ  is the 

correlation between 1dZ  and tdW , 1Z  and 2Z  are two standard Brownian motions, 1Z is uncorrelated with 2Z , 1 2[ 0]E dZ dZ = .

We construct a hedging portfolio comprising of an option V  less ∆  contracts of the imperfectly correlated asset tH . 

The portfolio is financed by the sale of a bond :tM

,t t t tV H M= − ∆ −∏
The assumption is that t t tM V H= − ∆ , at the time t . This means that in 0 t T< <  period, no funds were added or 

removed from the portfolio.
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Then, let ,x

H t

V
H x

σ ρ ∂
σ ∂

∆ =  can eliminate sources of randomness, and the coefficient of 1dZ  is zero. Thus, we can get
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Obviously, this hedging strategy only partially hedges the portfolio, and there is still randomness in the portfolio. 
Therefore, we assume that the expectation of 

t∏  change is zero, and when the basis is the HDD index, we get a PIDE of

a weather derivative, and the temperature follows the mean regression Brownian motion:
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Let ( , ) ,x x
x H

H H

x t r
σ σ

γ µ ρµ ρ
σ σ

= − + and the terminal conditions meet the following formula:

min max( , , ) 0, ( , , ) 0, lim ( , , ) 0,
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3.3 The HJB equation of OU process
Because we have to consider the problems brought by the HJB equation, we know that in the market, the volatility and 

drift rate of geometric Brownian motion are changed, so here we give the volatility of weather derivatives to meet a range of 
changes, we will get the following HJB equation:

min max

2

[ ]

2
2,

1max ( , ) (18 ) 0.
2x

x
V V V Vx t x rV
t x yxσ σ σ
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4. Solve the HJB equation
We let , ( , , ) ( , , ) ( , , ),t T V x y t V x y T U x yτ τ τ= − = − =  thus we can get

2 2

2 2, , , .V U V U V U V U
t x x y y x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂τ ∂ ∂ ∂ ∂ ∂ ∂

− = = = =

For HDD indices, the weather derivative option pricing model becomes

2
2

2

1(18 ) ( , )
2 x

U U U Ux x T rU
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∂ τ
∂

=

lim ( , , ) 0, ( , ,0) ( (0)) ,Hy
U x y U x y tick K y

∞
τ +
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Before going any further, let’s introduce the following definition. We use equally spaced grids on the x  coordinate to 
discrete min , 0,1, , ,ix x i x i I= + ∆ = …  similarly, on y  coordinate let min , 0,1, , .jy y j y j J= + ∆ = …  Then let , ( , , )n

i j i j nU U x y τ=  

denote the solution at the average temperature node ix  for the HDD index jy  and time level n . A semi-Lagrangian method 

is introduced to solve the above equation by using the method in literature [14].

The Lagrangian derivative along a trajectory (18 )dy x
dτ

+= − − is
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Then, we can get this form

min max,[ ]
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2
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2x
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DU U Ux T rU
D x xσ σ σ

∂ ∂γ τ σ
τ ∂ ∂∈
= − + −

Table 1. Parameter Settings

Parameters Values Parameters
Valuesr 0.05/365 minx -50

K {1000,100,10} maxx 50
λ 0.08 miny 0
α 0.237 maxy min(18 )T x× −

σ min max[ , ]σ σ m
tx 5.97+6.57·10-5t+10.4sin(3t-2.01)

( , )f x t (18 )x +− tick 1

We modify the program to get the following image of option prices:

Figure 1. The variation in the solution profiles in time for a put option with T=20

Figure 2. The variation in the solution profiles in time for a put option with T=20 in Li’s paper

We can see from the figure that the overall trend of the option price picture obtained is the same as that obtained by Li, 
but the option price is higher. Because we’re here from min max[ , ]σ σ  get the one that makes the option price maximum σ  
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value, It is also found that the optimal σ  value obtained is always the minimum value of the set σ  range.

5. Conclusion
This paper discusses the complexity and uncertainty in Asian option pricing by introducing the uncertainty volatility

hypothesis and using the HJB equation. The research shows that uncertainty volatility has a significant impact on the price 
of Asian options, resulting in a widening of the price range of options, which reflects the increased uncertainty and risk in the 
market. In practical applications, traditional pricing models may underestimate risk, while the method proposed in this paper 
can more accurately capture volatility in the market. Overall, this study provides theoretical support for the improvement 
of option pricing models and emphasizes the importance of considering uncertainty when dealing with complex financial 
instruments. This method can provide investors and risk managers with more reliable pricing and decision-making basis 
under uncertain market conditions.
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