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Abstract: This paper selects the daily closing price data of the Shanghai Composite Index from January 1, 2016 to Decem-
ber 31, 2017, excluding holidays, and preprocesses the data. After taking the logarithm and converting it into the rate of re-
turn data, the first-order difference is performed to make it into a stable time series, and then the ARMA(p,q) model is con-
structed. Through parameter significance test, residual test and characteristic root test, according to the minimum principle
of AIC, the optimal model is finally determined to be ARMA(2,5) of sparse coefficient, and the expression of the model is
obtained. The GARCH(1,1) model is established for the residual of ARMA(2,5), and the model expression is obtained. In
order to directly predict the return rate of the Shanghai Composite Index, the ARIMA(2,1,5) model of the sparse coefficient
is constructed for the return rate of the Shanghai Composite Index, and the model expression is obtained. By predicting the
Shanghai Composite Index return data on January 2, 2018, it is found that the prediction error of the model is small, and it
can be used for subsequent predictions.
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1. Construction of ARMA(p,q) model and residual GARCH(p, q) model

1.1 Data selection and preprocessing

Due to the large volatility and differences of individual stocks in the stock market, using the Shanghai Stock Exchange
Index as a reference standard to reflect the stock market situation can more systematically predict the stock market trend.
Select the daily closing price data of the Shanghai Stock Exchange index from January 1, 2016 to December 31, 2017,
excluding holidays, draw a relevant time series graph for the closing price data y, and conduct an autocorrelation test, and
find that the data is non-stationary.
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Figure 1. Time series chart of Shanghai stock index return rate from 2016 to 2017

Volume 2 Issue 2 | 2021 | 63 Modern Economics & Management Forum



ACF

Current clasing price

1.0

06
1
3200 3400
I |

ACF
04
3000

2800

0.0

T T T T T T T T T
0 5 10 15 20 25 2800 3000 3200 3400

Lag

Prior day clesing price

Figure 2. Autocorrelation graph of return rate and scatter plot of adjacent data

The general trend of the Shanghai Composite Index in the past two years has no obvious cycle and seasonality, and the
fluctuation range is large. The ACF exhibits a tailing phenomenon, but the attenuation is slower and does not fall within the
range. The adjacent data scatter chart shows the closing price of the previous day There is a clear positive correlation with
the current closing price. Therefore, it can be judged that the sequence is non-stationary and does not satisfy randomness.

Next, the sequence is smoothed. Take the logarithm of the closing price sequence and transform it into a return rate

sequence, and then perform a first-order difference to obtain the sequence V7V, namely:

Vlny :Znyt _Znytfl’t:1a2>3a"',n

1.2 Stationarity test

It can be seen from the time series diagram that the time series after the first-order difference fluctuates at the zero
mean value, and the ACF quickly decays to 0, and basically all fall within the interval, so the series is stable.
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Figure 3. Time sequence diagram of return rate after first-order difference and ACF and PACF diagrams
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1.3 White noise inspection

Table 1. White noise test of yield series after first-order difference

Box — pierce test

diff (Inx) — squared 23.519 40.441
df 6 12
p —value 0.00064 6.07x e

At the 5% significance level, the null hypothesis is rejected, that is, the yield data after the first-order difference is not
a white noise sequence.

1.4 Construction of ARMA(p,q) model

Since the yield data after the first-order difference is stable and non-white noise, the ARMA(p,q) model is selected to
fit the data.
1.4.1 The order of the model

After the above-mentioned smoothing treatment, the order is further determined by eacf.

AR/MA

0123456782910 11 12 13
0Oxx00X000X0X X X X
lXxXo00Xo000X00 O O O
2 XX00XX00000 O O O
3 XoxXxo0X000000 O O O
4 X XxXXxXX0000000 0 O O
S XX0XX0000O00 O O O
6 000XO0OXO0OO0OO0OO0OO0O O O O
TX00X0X00X00 O O O

Figure 4. ARMA(p,q) model ordering diagram

It is preliminarily determined that the model is ARMA(3,5) or ARMA(1,5) model.
1.4.2 Model parameter estimation and testing

(1) Test and estimate the parameters of the model

Fit the data based on the ARMA(3,5) and ARMA(1,5) models, and adjust the parameters to make the model pass the
significance test. The model ARMA(3,5) is reduced to the ARMA(2, 5), the model ARMA(1,5) is reduced to MA(S).

Table 2. Parameter estimation results of ARMA(p,q) model

Model Parameter  Estimated value Standard error T test P value Significance
AR(2) 0.48324 0.09590 5.039 4.68xe” ok
MA(1) -0.08508 0.04008 -2.123 0.0338 *
ARMA(2,5) »
MA(2) -0.47600 0.10182 -4.675 2.94xe ok
MA(5) -0.11839 0.05146 -2.301 0.0214 *
MA(1) -0.10452 0.04493 -2.326 0.02000 *
MA(S)
MA(5) -0.14120 0.04492 -3.144 0.00167 o

(2) Model checking and optimization

The white noise test on the residual sequence can verify the relevance of the model and the randomness of the
variables, thereby verifying the rationality of the model. The residual sequence fluctuates around 0, and the autocorrelation
coefficient and partial autocorrelation coefficient coefficients quickly decay to 0, and basically fall within the interval, so it
can be judged that the residual is a stationary sequence.
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Figure 5. ARMA(2,5) residual sequence test chart
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Figure 6. MA(5) residual sequence test chart
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Draw a scatter plot of ARMA(2,5) model and MA(5) residual adjacent data, and find that there is no correlation
between the residual data and it is random.
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Figure 7. Scatter plot of adjacent data of residual sequence (left: ARMA(2,5); right: MA(5))

Through Box test, the original hypothesis that the residual sequence is a white noise sequence is accepted at a
significance level of 5%, so the residual sequence is a white noise sequence.

Table 3. ARMA(2,5) residual sequence model parameter estimation results

Box — pierce test

residuals(r.armal) — squared 1.5369 12.837

ARMA(2,5) df 6 12
p~value 0.975 0.381
residuals(r.arma2) — squared 0.99372 17.488

MA(5) df 6 12
p—value 0.9858 0.1321

In summary, the residuals of the ARMA(2,5) and MA(5) sequences are stationary white noise sequences, which
proves that the conclusions of the model are valid, and the model already contains all the information of the data; in order
to further test the rationality of the model , Discriminate the characteristic roots of the model, and find that the value of the
characteristic roots of the two models is greater than 1, that is, all the characteristic roots are outside the unit circle. The
model is determined to be the ARMA(2,5) of the sparse coefficient. The expression is:

dlny = 0.483239X,  +& —0.0850833¢,_, —0.4759967¢, , —0.1183926¢, .
. =9.009xe”

And the MA(5) of the sum sparse coefficient, the expression is:

dlny=¢,-0.1045183¢,_, —0.1412021¢, _;
0. =9.243xe”

Choose the best model ARMA(2,5) through the AIC minimum principle.

Model ARMA(2,5) MA(5)

AIC -3146.22 -3146.22

1.5 ARMA(2,5) model prediction
Next, use the model to simulate and predict the three working days from January 2 to 4, 2018.
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Table 4. ARMA(2,5) model prediction values

Time Observed value ARMA(2,5) model prediction value
2018.01.02 0.01236702 0.001051217
2018.01.03 0.06187650 -0.00353813
2018.01.04 0.04915553 0.0008742533
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Figure 8. ARMA(2,5) model prediction graph
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In Figure 8, the black curve represents the fitted sequence curve, the red curve represents the predicted value, and the
blue dotted line represents the 95% confidence upper and lower limits of the fitted sequence, and the predicted value is
basically within the confidence interval.

1.6 Conditional heteroscedasticity modeling

After obtaining the mean equation of the ARMA(2,5) model with sparse coefficients, the correlation test and
conditional heteroscedasticity test are performed on the residual sequence of the model, and the GARCH(q,p) model is
established for the sparse coefficient ARMA(2,5). The residual term of the model is fitted.
1.6.1 Heteroskedasticity autocorrelation test

Conditional heteroscedasticity is the ARCH effect. By drawing a time series diagram of the residuals, which is the
sum of squares of the residuals, it is found that the series residuals have a fluctuating clustering effect. Afterwards, the
residuals are tested and the test results are significant, most of which are less than 0.05, indicating the model The residual
sequence of has ARCH effect, you can try to build a GARCH model for the residuals.
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Figure 9. Residual sequence diagram and test diagram
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1.6.2 GARCH model order determination and parameter estimation
First, establish the ARMA(p,q) model to determine the order of the square of the residual.
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Figure 10. Model ordering diagram

Finally, the model is determined to be ARMA(1,1), and then the GARCH(1,1) model is fitted to the residual sequence.
Adjust the parameters to make the model pass the significance test, and obtain the GARCH(1,1) model structure as:

£/, =6.751xe” +0.9391g},, , +4.814xe” xy],

Table S. GARCH(1,1) model parameter estimation results

Parameter Estimated value Standard error T test P value Significance
a, 6.751x¢” 2.061%¢” 3.176 0.00105 o
a, 4.814x%¢> 7.798x¢” 6.174 6.68%¢ ™" ok
b, 0.9391 9.030xe” 103.998 <2xe” ok

1.6.3 Normality test of residuals
To test the residual of GARCH(1,1), the p value is less than 0.05, and the null hypothesis of normality test cannot be

accepted.

Table 6. Jarque Bera Checklist

Jarque Bera Test

X —squared 253.74
df 2
p —value 2.2%¢

Through Box test, it is found that the p-values are all greater than 0.05, which shows that the residuals of the
GARCH(1,1) model are white noise sequences.
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Figure 11. The residual Box test
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In summary, the ARMA(2,5)-GARCH(1,1) model is fitted to the return data after the first-order difference. The
expression to get its mean and variance is:

dlny=0.483239X, , +¢, —0.0850833¢, , —0.4759967¢, , —0.1183926¢,

&n =6.751xe” +0.9391g,,_, +4.814xe™ x 72,

2. ARIMA (p, d, q) model construction and prediction

Above we constructed the ARMA(2,5) model to predict the return sequence after the first-order difference, and
constructed the GARCH(1,1) model for the residual items. In order to more intuitively predict the return rate of the
Shanghai Composite Index in the next few days, we build an ARIMA(2,1,5) model for the non-stationary return rate series
based on the above analysis.

2.1 Unit root test

In order to further test the stationarity of the return rate series, an ADF test is performed on the data. At a significance
level of 1%, the return rate series is not stable.

Table 7. ADF inspection

Augmented Dickey-Fuller Test

Dickey-Fuller -3.6401
Lag order 7
p-value 0.02889

2.2 ARIMA (p, d, q) model construction

Based on the time series ARMA(2,5), by adjusting the parameters, the model passes the significance test, and the
model is determined to be the ARIMA(2,1,5) of the sparse coefficient. The expression is:

Viny=0.3457X,, +&, —0.1184¢,_ —0.2272¢, , —0.1586¢,
o2 =0.0001061

Table 8. ARIMA(2,1,5) parameter estimation results

Parameter Estimated value Standard Error
AR(2) 0.3457 0.1843
MA(1) -0.1184 0.0455
MA(2) -0.2272 0.1748
MA(5) -0.1586 0.0475

(;3 =0.0001061 ; Log likelihood value=1537.26; AIC=-3066.51

2.3 ARIMA(2,1,5) model prediction

Use the ARIMA(2,1,5) model to simulate and predict the return rate data for one working day on January 2, 2018, and
draw the forecast map.

Table 9. ARIMA(2,1,5) predicted values

Time Observation value ARIMA(2,1,5) model prediction value Error ratio

2018.01.02 8.10754 8.116216 0.107%
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Figure 12. ARIMA(2,1,5) forecast chart
As can be seen from Figure 12, the black curve represents the fitted sequence curve, the red curve represents the

predicted value, and the blue dashed line represents the 95% confidence upper and lower limits of the fitted sequence. The
predicted value is basically within the range of the confidence interval, and the prediction is relatively accurate.

3. Conclusion
Fit the sparse coefficient ARMA(2,5) to the return data after the first-order difference, the expression of the model

is: dlny=0.483239X, , +¢, —0.0850833¢, , —0.4759967¢, , —0.1183926¢, . And build the GARCH(1,1) model for the

residuals of ARMA(2,5), and get the model expression as: &;,_; =6.751xe” +0.9391¢}, , +4.814xe”* xy},
In order to directly predict the rate of return of the Shanghai Composite Index, the ARIMA (2,1,5) model of the sparse

coefficient is constructed for the rate of return of the Shanghai Composite Index, and the model expression is obtained as:

Viny =03457X,, +& —0.1184¢, , —0.2272¢, , —0.1586¢,

By predicting the Shanghai Composite Index return data on January 2, 2018, it is found that the prediction error of the
model is small, and it can be used for subsequent predictions.

References

[17 Xu Jun. Empirical analysis of gold futures prices based on the ARMA model-523 sets of data from the New York
Stock Exchange from 2006 to 2016. Industrial Economic Forum. 2017; 04(04): 16-22.

[2] Guo Xue, Wang Yanbo. Forecast of Shanghai stock index based on ARMA model. Times Economics and Trade. 2006;
(S3): 58-59.

[3] Deng Jun, Yang Xuan, Wang Wei, Jiang Zhehui. Empirical research on stock price prediction using ARMA model.
Enterprise Herald. 2010; (06): 266-267.

[4] Huang Lixia. Analysis and forecast of stock price based on ARIMA model — Taking Ping An of China as an example.
Science and Technology Economic Market. 2020; (10): 62-63.

Volume 2 Issue 2 | 2021 | 71 Modern Economics & Management Forum



