
Journal of Autonomous Intelligence, Vol. 1, No. 1, 2018

Recent Advances in Particle Swarm Optimization for
Large Scale Problems

Danping Yan

College of Public Administration,
Huazhong University of Science and Technology,
Wuhan, 430074, China

Yongzhong Lu*

School of Software Engineering,
Huazhong University of Science and Technology,
Wuhan, 430074, China
Fax: +86 27 87792251
E-mail: hotmailuser@163.com
*Corresponding author

Min Zhou
College of Public Administration,
Huazhong University of Science and Technology,
Wuhan, 430074, China

Shiping Chen

Data61,
Commonwealth Scientific and Industrial Research Organization,
Marsfield, 2122, Australia

David Levy

School of Electrical and Information Engineering,
University of Sydney,
Sydney, 2006, Australia

Jicheng You

School of Software Engineering,
Huazhong University of Science and Technology,
Wuhan, 430074, China

Abstract:
Accompanied by the advent of current big data ages, the scales of real world

optimization problems with many decisive design variables are becoming much larger.
Up to date, how to develop new optimization algorithms for these large scale problems
and how to expand the scalability of existing optimization algorithms have posed further
challenges in the domain of bio-inspired computation. So addressing these complex large
scale problems to produce truly useful results is one of the presently hottest topics. As a
branch of the swarm intelligence based algorithms, particle swarm optimization (PSO) for
coping with large scale problems and its expansively diverse applications have been in
rapid development over the last decade years. This review paper mainly presents its recent
achievements and trends, and also highlights the existing unsolved challenging problems
and key issues with a huge impact in order to encourage further more research in both
large scale PSO theories and their applications in the forthcoming years.
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Recent Advances in Particle Swarm Optimization for Large Scale Problems

1 Introduction

With the emergence of big data era, quantity real
world problems, such as gene recognition in bio-
informatics, inverse problems of chemical kinetics and
biological systems, vehicle routing in traffic networks,
electronic system design, resource scheduling problem,
connection weight optimization in training deep neural
network architectures, and so on, are becoming more
complex. It is difficult for researchers and practitioners
to deal with analysis, capture, data curation, search,
sharing, storage, transfer, visualization, querying and
information privacy by using originally traditional data
processing approaches. Likewise, increased landscape
complexity, characteristic alteration and exponentially
expanded search space also pose new challenges in
the domain of bio-inspired techniques. How to expand
these bio-inspired optimization algorithms has become
a well recognized challenging expectation task.

Some representative exemplars among these bio-
inspired algorithms cover evolutionary algorithm,
simulated annealing, differential evolution, PSO and
ant colony optimization. They often suffer from the
curse of dimensionality when they are applied to
solve large scale optimization problems. Accordingly,
overcoming these existing difficulties has received
an increasing attention from academic communities.
In recent years, many valuable attempts have been
motivated and proposed. Most noticeable contributions
have been reported in the leading journals and the
international conferences and workshops. Particularly
speaking, PSO has been playing a rather important role
among these contributions. This paper aims to highlight
the latest development of PSO and its variants to tackle
large scale optimization problems and further inspire
more future research in both large scale PSO theories
and their applications.

The keys to solve large scale optimization problems
for the canonical PSO and its variants are to reduce
the dimensionality of particle swarm data sets and
to improve their diversity. In the light of reducing
dimensionality status, the PSO approaches to cope
with large scale optimization problems may be
classified into two categories: dimensional reduction
based cooperative coevolution approaches and non-
dimensional reduction based ensemble evolution
approaches. In the former, most researchers often take
diverse divide-and-conquer measures to decompose
large scale particle swarm data sets into relatively lower
dimensional data subsets, and concurrently consider
their coevolution phenomena to smooth away large
scale optimization problems. Different decomposition
styles lead to twofold methods, namely, static and
dynamic grouping methods. In the latter, most
researchers have either proposed particularly biological
mutation, selection and crossover mechanisms,
or brought forward neighborhood topologies, or
employed effective optimization operators in the course
of swarm evolution throughout the whole search

space. Actually, these methods without divide-and-
conquer strategies focus on individual competition
and population cooperation to run specific dynamic
trajectories regardless of dimensionality reduction.
Obviously, the distinct critical discrepancy between
dimensional reduction based cooperative coevolution
approaches and non-dimensional reduction based
ensemble evolution approaches is whether to adopt
divide-and-conquer strategies or not during the process
of tackling large scale optimization problems. The
hierarchical taxonomy of the PSO solutions to dealing
with large scale optimization problems is consolidated
in Figure 1. Besides, the corresponding summaries of
major PSO variants of the non-dimensional reduction
based ensemble evolution and dimensional reduction
based cooperative coevolution methods are shown in
Tables 1 and 2, respectively.

The remainder of the paper is organized as follows:
Section 2 gives a brief description of the canonical PSO
for large scale optimization problems. Section 3 depicts
the recent achievements of large scale PSO. Section
4 presents the recent trends and challenges of large
scale PSO and finally comes to conclusions and gives
suggestions on future research work of large scale PSO
theories and applications.

2 Description and formulation of canonical
PSO for large scale optimization problems

Addressing large scale problems is attributed to the
following definition:

min/max F(~x) = f (x1,x2, · · · ,xn),n ≥ 100,~x ∈ X ⊆ Rn, (1)

where X ⊆ Rn denotes the decisive space with n
dimensions, ~x = (x1,x2, · · · ,xn) represents the decisive
variable vector, f : X → R stands for a real continuous
nonlinear objective function for mapping from n
dimensional space to one dimensional fitness value
F(~x), and n is the number of decisive variables in large
scale problems addressed here.

PSO is considered as one representative and
widely used swarm intelligence paradigm proposed
by Kennedy and Eberhart in 1995 for solving
optimization problems. Due to its easy implementation
and effectiveness, PSO has so far greatly progressed
and been successfully used in solving large scale
optimization problems. It tactfully replies on the
flocking behavior synergy of flying birds on the way
to the specific destination to locate the local and global
optima through the whole search space. Each particle
with a position and a velocity flying in an n dimensional
search space can be depicted by the following iterative
equations (2)-(3):

~vi(t + 1) = ω~vi(t)+ c1~R1(t)( ~pbesti(t)−~xi(t))

+ c2~R2(t)( ~gbesti(t)−~xi(t)),
(2)

~xi(t + 1) = ~xi(t)+~vi(t + 1), (3)
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Table 1 A summary of major PSO variants of the non-dimensional reduction based ensemble evolution methods.

Method Author Algorithm
abbreviation

Dimensionality Brief comment

Social
learning
methods

Wang et al. (2011)
Montes de Oca et al. (2010)
Montes de Oca et al. (2011)

Cheng and Jin (2015)

GOPSO
IPSO

IPSOLS
SL-PSO

[30,100]
[100,100]
[50,1000]
[100,1000]

Employs generalized opposition based learning and Cauchy mutation
Incremental optimizer with a growing population size and local search
Combines components of social and individual learning mechanisms
Adopts better learning and dimensional dependent parameter control

Biological
mechanism
based
methods

Hsieh et al. (2008)
Ali (2010)

Garcı́a-Nieto and Alba (2011)
Wang et al. (2013)

Cheng and Jin (2015)
Rather et al. (2015)
Hou et al. (2015)
Cai et al. (2015)

Banka and Dara (2015)
Zhang et al. (2015)
Chen et al. (2015)

Cheng et al. (2015)
Sun et al. (2016)

Zhang et al. (2016)

EPUS-PSO
SAPSO

RPSO-vm
DNSPSO

CPSO
BPSO

ESEPSO
GDPSO

HDBPSO
MR-IDPSO
AMSPSO
BGPSO

PSO
DCSO

[100,1000]
[100,1000]
[50,1000]
[30,100]
[100,5000]
[110,470]
[80,80]
[100,11000]
[2000,7000]
[50,10000]
[80,230]
[33,69]
[3840,3840]
[100,1000]

A optimizer with an efficient population utilization strategy
Both safety distance and proximity index are introduced
A velocity modulation and a restarting mechanisms are introduced
Employs diversity enhancement and neighborhood search strategies
A pairwise competition mechanism is introduced
A mixed integer dynamic PSO based method
A canonical PSO algorithm
A greedy discrete PSO framework
A Hamming distance based binary PSO algorithm
A MapReduce based improved discrete PSO algorithm
A PSO with adaptive multi-swarm strategy
An efficient binary PSO algorithm
A canonical PSO algorithm
A dynamic competitive swarm optimizer based on population entropy

Neighborhood
topology
based
methods

Fan et al. (2014) FT-DNPSO [30,1000] Dynamic neighborhood based on kernel fuzzy clustering

Local
search
based
methods

Zhao et al. (2008)
Zhao et al. (2010)

DMS-PSO
DMS-PSO-SHS

[100,1000]
[1000,1000]

A dynamic multi-swarm particle swarm optimizer
hybridize dynamic multi-swarm and a sub-regional harmony search

Sampling
based
methods

Chu et al. (2011)
Engelbrecht (2011)

Budhraja et al. (2013)
Sahu et al. (2015)

Van Zyl and Engelbrecht (2015)
Van Zyl and Engelbrecht (2016)

BHSPSO
HPSO

RoEPSO
DPSO
PSO-IS
PSO-VS

[10,100]
[10,1000]
[10,30]
[64,128]
[500,2000]
[500,2000]

Consider the aspects of the three boundary handling techniques
A heterogeneous PSO
Guided re-initialization schema into PSO
An improved discrete multiple PSO based strategy
A novel strategy of particle swarm initialization
Group-based stochastic scalability of PSO velocities

Hybrid
cooperation
based
methods

Chu et al. (2008)
Zhang and Yi (2011)

Lin et al. (2014)
Aziz and Tayarani-N (2014)

Tang et al. (2014)
Li et al. (2015)

Gong et al. (2016)
Ouyang et al. (2016)

FBSA
SFIPSO
GA-PSO
AMPSO
IQPSO

PS-ABC
DPSO

HHSPSO-GDS

[10,30]
[10,30]
[13,13]
[100,500]
[40,1000]
[60,500]
[06,30]
[30,30]

A novel fast bacterial swarming algorithm
A scale free fully informed PSO algorithm
A hybrid both genetic algorithm and PSO algorithm
Uses a population based optimizer with a multiple local search procedure
An improved quantum behaved PSO algorithm
Combines local search with global search in artificial bee colony
A discrete PSO algorithm
A hybrid harmony search PSO with global dimension selection

Table 2 A summary of major PSO variants of the dimensional reduction based cooperative coevolution methods.

Method Author Algorithm
abbreviation

Dimensionality Brief comment

Static
grouping
methods

Van den Bergh and Engelbrecht
(2004)

Jiao et al. (2011)
Jiang and Wang (2014)

CPSO
CCPSO
BPSO

[10,30]
[10,10]
[02,60]

Cooperative particle swarm optimizer-SK(HK)
Cooperative particle swarm optimizer based on catastrophe
Bare-bone PSO algorithm

Random
dynamic
grouping
methods

Li and Yao (2009)
Li and Yao (2012)

CCPSO
CCPSO2

[100,1000]
[100,2000]

Incorporates the random grouping and the adaptive weighting schemes
Adopts a new PSO position updating rule

Learning
dynamic
grouping
methods

Sun et al. (2012)
Ismail and Engelbrecht (2012)

Lee et al. (2015)

CPSO-SL
CPSO

DCCPSO

[20,1000]
[05,30]
[30,90]

A CPSO algorithm with statistical variable interdependence learning
A measurement of diversity for the cooperative optimizer
Dynamic cooperatively coevolving PSO
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Figure 1 The hierarchical taxonomy of the PSO solutions to dealing with large scale optimization problems.

where t is the iterative variable, ~vi(t) and ~xi(t) are the
velocity and the position of the i-th particle, ω is the

termed inertia weight, ~R1(t) and ~R2(t) are two positive

random vectors with [0,1]n, ~pbesti(t) and ~gbesti(t) are
so far the best local and global solutions of the i-th
particle, c1R1(t)( ~pbesti(t)−~xi(t)) and c2R2(t)( ~gbesti(t)−
~xi(t)) are referred as the cognitive component and the
social component.

The equations (1)-(3) are composed of the canonical
PSO for large scale optimization problems. During
the process of solving large scale optimization
problems, various dimensional reduction and diversity
enhancement strategies are needed to put into effect.

Compared with other population-based
metaheuristic algorithms such as evolutionary
algorithm, genetic algorithm, differential evolution,
ant colony optimization, artificial bee colony, and so
on, PSO similarly encounters the deficient curse of
dimensionality when solving large scale optimization
problems. This means that as the dimensional size of
the tackled problem increases, the PSO’s performance
obviously becomes deteriorated because the search
space is exponentially enlarged and the landscape
complexity and characteristic alteration are elevated.
As is known to all, either evolutionary algorithm or
genetic algorithm is inspired by biological evolution,
such as reproduction, mutation, recombination and
selection, and has crossover and mutation operators.
Differential evolution optimizes a problem by
iteratively trying to improve a candidate solution
with regard to a given measure of quality, and also
has crossover operator. Ant colony optimization is
based on probabilistic pheromone densities to solve
combinatorial optimization problems which can be
boiled down to finding good paths through graphs.
Artificial bee colony is based on the intelligent

foraging behavior of honey bee swarm (employed bees,
onlookers and scouts). However, the idea of PSO is to
mimic the behaviors of flying birds in the sky. It has
three special indispensable components as mentioned
above in the equation (2) and better performance of
parallel computing. Moreover, it has less complex
computation and faster convergence and is easily
understood and programmed. Accordingly, most of the
dimensional reduction and non-dimensional reduction
techniques can be widely embedded in the canonical
PSO and its variants and their applications. As for
these aspects, other population-based metaheuristic
algorithms are not comparable to PSO. Empirically,
from the present statistical references with regard to
population-based metaheuristic algorithms for solving
large scale optimization problems in Tables 1 and
2, the quantity of references of PSO is more than
that of any other population-based metaheuristic
algorithm while the quantity of references of artificial
bee colony is the smallest. In addition, in terms
of the reference quantities, other population-based
metaheuristic algorithms are ranked by the descending
sequence below: differential evolution, evolutionary
algorithm + genetic algorithm, ant colony optimization.

3 Recent achievements in large scale PSO

3.1 Dimensional reduction based cooperative
coevolution approaches

It is known that there are much more contributions to
treating large scale optimization problems effectively.
Among the solutions, the classical attempts to overcome
these intractable matters are to lower the high
dimensionality. Generally, these attempts are called the
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divide and conquer approaches or the dimensional
reduction based cooperative coevolution approaches.
In accordance with the decisive variable grouping or
partitioned styles, the dimensional reduction based
cooperative coevolution approaches can be parted into
two general subcategories: static and dynamic grouping
methods. Likewise, different dynamic grouping
strategies also result in two subcategories: random
or learning based dynamic grouping methods. The
recent advances of both static grouping methods and
dynamic grouping methods concentrate on algorithmic
development and applications of large scale PSO.

3.1.1 Static grouping methods

While static grouping methods are applied to a
wide range of large scale optimization problems, they
keep the grouping factors constant all through the
evolutionary course.

• Van den Bergh and Engelbrecht (2004) presented
two variants of the original PSO algorithm
which were called the cooperative particle
swarm optimizers (cooperative particle swarm
optimizer-SK and cooperative particle swarm
optimizer-HK), employing cooperative behaviors
to significantly improve the performance of the
original PSO algorithm. These are achieved by
using multiple swarms to optimize different
components of the solution vectors cooperatively.
Main framework of the cooperative particle
swarm optimizer-SK is based on the original
decomposition method with a special difference
defined by Potter and De Jong in 1994 where
a vector was partitioned into k s-dimensional
subproblems and n = k × s. A concatenation
of all global best particles from all k swarms
is called a context vector ŷ which is used to
compute the fitness of a particle in a swarm.
In the cooperative particle swarm optimizer-HK,
the original PSO algorithm and the cooperative
particle swarm optimizer-SK are incorporated so
that the cooperative particle swarm optimizer-
SK is performed for one cycle, followed by the
original PSO algorithm in the next cycle. A
simple information exchange method between
the cooperative particle swarm optimizer-SK
and the original PSO algorithm is conducted
as the context vector ŷ in the cooperative
particle swarm optimizer-SK after one iteration
is applied to replace a randomly selected
particle in the original PSO algorithm. If a
new global best particle is discovered in the
original PSO algorithm, this vector will be
replaced by a randomly selected particle in
the cooperative particle swarm optimizer-SK
section. Applications of the new PSO variants on
several benchmark optimization problems show
a marked improvement in performance over the
original PSO algorithm.

Afterwards, Jiao et al. (2011) adopted a
cooperative particle swarm optimizer based on
catastrophe to address the flow shop production
scheduling problem with uncertainties in modern
manufacturing environments, where the fuzzy
processing time is considered, the duration time
of intermediate is unlimited, and the maximum
membership function of mean value has been
applied to solve the nonlinear fuzzy scheduling
model, in order to convert the fuzzy optimization
problem to the general optimization problem.

Then, based on the cooperative coevolution
framework, Jiang and Wang (2014) decomposed
the original high dimensional clustering problem
to several subproblems, each of which is evolved
by an optimizer called the bare-bone PSO
algorithm independently. In addition, they also
designed a new centroid-based encoding schema
for each particle and applied the Chernoff bounds
to decide a proper population size.

3.1.2 Dynamic grouping methods

Different from static grouping methods, dynamic
grouping methods have dynamic grouping factors
when they are executed throughout the search space.
Currently, dynamic grouping factors encompass both
random grouping factor and learning based grouping
factor. They both are very helpful to improve the
diversity of the particle swarm in handling large scale
optimization problems.

• Random grouping methods

In the study of the random grouping
methods, Li and Yao (2009) presented a
cooperative coevolving PSO (CCPSO) algorithm
incorporating the random grouping and the
adaptive weighting schemes, which have
been shown to be effective for handling
high dimensional nonseparable problems. The
proposed CCPSO algorithm outperforms a
previously developed coevolving PSO algorithm
on nonseparable functions of 30 dimensions.
Furthermore, the scalability of the proposed
algorithm to high dimensional nonseparable
problems of up to 1000 dimensions is examined.

Subsequently, Li and Yao (2012) presented a new
CCPSO2 algorithm in an attempt to address
the issue of scaling up PSO variants in solving
large scale optimization problems up to 2000 real
valued variables. The proposed CCPSO2 builds
on the success of an early CCPSO algorithm
which employs an effective variable random
grouping technique, and adopts a new PSO
position updating rule that relies on Cauchy and
Gaussian distributions to sample new points in
the search space, and a scheme to dynamically
determine the coevolving subcomponent sizes
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of the variables. On high dimensional problems
ranging from 100 to 2000 variables, CCPSO2
performs significantly better than a state-of-the-
art evolutionary algorithm sep-CMA-ES, two
existing PSO algorithms, and a cooperative
coevolving differential evolution algorithm when
solving large scale and complex multi-modal
optimization problems.

• Learning based grouping methods

Besides the random grouping strategies, the
learning based grouping methods focus on
the acquired learning experiences either before
or during the evolutionary process. These
experiences are obtained for the intrinsic
characteristics of large scale optimization
problems and appropriately determine the
emerging prior probabilities of the interacting
better decisive variables in the subgroups in an
endeavor to enhance the diversity of the particle
swarm.

Decomposition decision regarding variable
interdependencies plays a significant role in
the algorithm’s performance. Considering the
algorithm’s variable interdependencies, Sun et
al. (2012) proposed a CPSO algorithm with
statistical variable interdependence learning
(CPSO-SL). A statistical model is proposed
to explore the interdependencies among
variables. With these interdependencies, the
algorithm partitions large scale problems into
overlapping small scale subproblems. Moreover,
a CPSO framework is proposed to optimize
the subproblems cooperatively. Simultaneously,
theoretical analysis is also presented for further
understanding of the proposed CPSO-SL. The
success of the cooperative particle swarm
optimizer has been ascribed to its increased
diversity.

Ismail and Engelbrecht (2012) proposed a
measurement of diversity for the cooperative
particle swarm optimizer which is compared
with three other diversity measures to establish
the most appropriate diversity measure for the
cooperative particle swarm optimizer.

Lee et al. (2015) introduced a dynamic
cooperatively coevolving PSO into distributed
multi-robot predictive control model to guarantee
asymptotic stability of the multi-agent systems
whose state vectors are coupled and nonseparable
in a cost function. The proposed algorithm is
proposed to deal with the formation control
problem. As the proposed algorithm finds the
Nash equilibrium state in a distributed way,
robots can quickly move into a desired formation
from their locations.

3.1.3 Discussion

Dimensional reduction based cooperative coevolution
approaches generally include three classical steps
as follows: problem decomposition, subcomponent
optimization and cooperative combination. The above-
mentioned static grouping methods perform better
on separable problems. Note that the no-separable
or epistasis problems are referred to the problems
with strong interacting variables, i.e., the influence
of each variable on the fitness value is dependent of
any other variables. Since the static grouping methods
are inefficient in handling non-separable or epistasis
problems, the dynamic grouping methods have been
proposed to deal with them. They dynamically change
the grouping structure so that they can easily detect
variable interactions and assign interacting variables to
the same subcomponent, while the fixed subcomponent
sizes in the static grouping methods remain unchanged
in the same subcomponents over the optimization
process. Compared with the static grouping methods,
the random grouping methods show a comparably
efficient performance on scalable non-separable or
epistasis problems. However, their performances
become ineffective when the number of interacting
variables grows. As a result, the dynamic grouping
methods are proposed to increase the placing chances
of the interacting variables in the same subcomponent
especially when the number of interacting variables
becomes very large. They usually reply on the prior
knowledge of the problem characteristics either
before or during optimization process to decide the
appropriate grouping of the interacting variables.
Accordingly, the dynamic grouping methods have
more advantages than the random grouping methods
when solving high dimensional problems with complex
variable interactions.

3.2 Non-dimensional reduction based ensemble
evolution approaches

More generally, non-dimensional reduction based
ensemble evolution approaches focus on the
introduction of specially innovative evolutionary
operators such as biological mutation, selection
and crossover, neighborhood topology, local search,
sampling, social learning, population alteration and
hybrid cooperation, and so forth during the exploration
and exploitation search process. These operators are not
the same as ones used in low dimensional optimization
problems.

3.2.1 Biological mechanism based methods

• Hsieh et al. (2008) presented a particle swarm
optimizer with an efficient population utilization
strategy. Variable particles are used to remove the
redundant particles so as to enhance the search
ability. Moreover, an moving vector is added
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in the the velocity equation and proportionally
varies by a certain probability to another particle’s
local best position. A search range sharing
strategy is also constructed to keep the particles
from falling into the local minima and to make the
global minimum found easily.

Ali (2010) investigated a novel PSO algorithm,
where an adaptive inertia weight is presented
at three evolution levels. The most important
features presented are both the safety distance
introduced to move the particle through its
current position, and the proximity index.

Garcı́a-Nieto and Alba (2011) incorporated two
new mechanisms into the PSO algorithm with
the aim of enhancing its scalability. A velocity
modulation method is first applied in the
movement of particles in order to guide them
within the region of interest. Then a restarting
mechanism avoids the early convergence and
redirects the particles to the promising areas in the
search space.

Wang et al. (2013) proposed a hybrid
PSO algorithm, which employs a diversity
enhancement mechanism and a neighborhood
search strategy to achieve a trade-off between
exploration and exploitation abilities.

In Cheng and Jin (2015), a novel competitive
swarm optimizer for large scale optimization is
proposed. A pairwise competition mechanism
is introduced, where the particle that loses
the competition will update its position by
learning from the winner. A theoretical proof of
convergence is provided, together with empirical
analysis of its exploration and exploitation
abilities, showing that the proposed algorithm
achieves a good balance between exploration and
exploitation and effectively solves problems of
dimensionality up to 5000.

Rather et al. (2015) proposed a mixed integer
dynamic PSO based method for optimal dynamic
reactive power allocation in large scale wind
integrated power systems.

In Hou et al. (2015), a mathematical model which
includes the variation of both wind direction
and wake deficit, is proposed. The problem
is formulated by using levelized production
cost as the objective function. The optimization
procedure is performed by a PSO algorithm with
the purpose of maximizing the energy yields
while minimizing the total investment.

In Cai et al. (2015), a greedy discrete PSO
framework for large scale social network
clustering is suggested. The particle statuses are
redefined under a discrete scenario. The status
updating rules are reconsidered based on the
network topology. A greedy strategy is designed
to drive particles to a promising region.

A Hamming distance based binary PSO
algorithm is used to handle the feature selection,
classification and validation of gene expression
data. Hamming distance is introduced as a
proximity measure to update the velocity of
particles in binary PSO framework to select the
important feature subsets in Banka and Dara
(2015).

Zhang et al. (2015) proposed a MapReduce based
improved discrete PSO algorithm to select the
optimal composited service from thousands of
functionally equivalent services with different
quality of service.

In Chen et al. (2015), a PSO with adaptive
multi-swarm strategy is proposed to solve
the capacitated vehicle routing problem with
pickups and deliveries, which includes goods
delivery/pickup optimization, vehicle number
optimization, routing path optimization and
transportation cost minimization. The proposed
PSO employs multiple PSO algorithms and an
adaptive algorithm with punishment mechanism
to search the optimal solution, which can deal
with large scale optimization problems.

Cheng et al. (2015) presented an efficient
binary PSO algorithm for loss minimization in
distribution network reconfiguration.

For the interferences suppression of a large scale
antenna array after a sub-array configuration,
a generalized sidelobe canceller weighting
approximation algorithm is presented. The
irregular sub-array configuration is obtained by
PSO in Sun et al. (2016).

In Zhang et al. (2016), a dynamic competitive
swarm optimizer based on population entropy is
proposed. The new algorithm is derived from the
competitive swarm optimizer. The new algorithm
uses population entropy to make a quantitative
description about the diversity of population,
and to divide the population into two subgroups
dynamically. During the early stage of the
execution process, to speed up convergence of the
algorithm, the subgroup with better fitness will
have a small size, and worse large subgroup will
learn from the small one. During the late stage of
the execution process, to keep the diversity of the
population, the subgroup with better fitness will
have a large size, and small worse subgroup will
learn from the large group.

3.2.2 Neighborhood topology based methods

• A PSO variant approach with dynamic
neighborhood that is based on kernel fuzzy
clustering and variable trust region methods,
is proposed, where a cooperative coevolution
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strategy incorporated with a kernel fuzzy C-
means clustering strategy is introduced to
divide the high dimensional problems into
the subproblem spaces. Simultaneously, an
independent variable ranges change adaptably
by using the variable trust region learning
method so as to expedite the convergence process.
Additionally, a dynamic neighborhood topology
assists this PSO variant to keep away from
premature convergence in Fan et al. (2014).

3.2.3 Local search based methods

• In Zhao et al. (2008), a dynamic multi-swarm
particle swarm optimizer is presented. In the
optimizer, the whole population is divided into a
large number of sub-swarms which are regrouped
frequently by using various regrouping schedules
and are exchanged among the particles in the
whole swarm. In the meanwhile, the Quasi-
Newton method is employed to improve its local
search ability.

Successively in Zhao et al. (2010), the dynamic
multi-swarm particle swarm optimizer and a sub-
regional harmony search are hybridized to form
another PSO variant. A modified multi-trajectory
search algorithm is also applied frequently on
several selected solutions.

3.2.4 Sampling based methods

• Chu et al. (2011) analyzed and compared
the aspects of the three boundary handling
techniques, namely, the random, absorbing and
reflecting schemes in the high dimensional
complex problems, and they indicated the
insights and the specific information about the
performance of PSO.

Engelbrecht (2011) developed a heterogeneous
PSO which allows particles to randomly select
a different behavior at each iteration from a
behavior pool. This algorithm is significantly
more scalable than a selection of homogeneous
PSO algorithms on large dimensional instances of
the benchmark functions.

Budhraja et al. (2013) introduced a guided re-
initialization schema into PSO to increase the
diversity portrayed by particles. The algorithm
implements a form of teleportation by which
particles are randomly re-initialized in the search
space once their behavior becomes predictable.
The predictability is modeled using a hyper-
sphere of variable radius, centered at the best
known solution.

Sahu et al. (2015) presented an improved discrete
multiple PSO based strategy to map applications

on both 2-D and 3-D mesh connected networks
on chip. A part of the initial population in
the multiple PSO approach is deterministically
generated.

In Van Zyl and Engelbrecht (2015), a novel
strategy of particle swarm initialization
particularly for high dimensional problems is
proposed. The initialization strategy encourages
the swarm to focus on exploitation rather than
exploration, thereby allowing it to find fairly good
solutions, even in the face of high dimensionality
and very large search spaces.

Van Zyl and Engelbrecht (2016) conducted an
analysis of the group-based stochastic scalability
of PSO velocities on high dimensional problems.

3.2.5 Social learning methods

• Wang et al. (2011) presented an enhanced PSO
algorithm, which employs generalized opposition
based learning and Cauchy mutation to overcome
the problem of premature convergence.

Montes de Oca et al. (2010) presented two PSO
algorithms: a) the incremental particle swarm
optimizer, which is a PSO algorithm with a
growing population size in which the initial
position of new particles is biased toward the best
so far solution, and b) the incremental particle
swarm optimizer with local search.

Montes de Oca et al. (2011) presented a case study
of a tuning in the loop approach for redesigning a
PSO algorithm for tackling large scale continuous
optimization problems. An incremental social
learning framework which combines components
of social and individual learning to increase
learning rate, is introduced in a PSO variant.
In the course of redesigning the PSO variant,
the tuning in the loop approach is used to
proceed within six phases, namely, selection
of a local search method, alteration of calling
and controlling the local search method, using
vectorial PSO rules, penalizing bound constraints
violation, and fighting stagnation with restarting.

Cheng and Jin (2015) introduced social learning
mechanisms into PSO to develop a social
learning PSO. Unlike classical PSO variants where
the particles are updated based on historical
information, including the best solution found
by the whole swarm and the best solution
found by each particle, each particle in the
proposed PSO learns from any better particles
in the current swarm. In addition, to ease
the burden of parameter settings, the proposed
PSO adopts a dimensional dependent parameter
control method.
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3.2.6 Hybrid cooperation based methods

• A novel fast bacterial swarming algorithm
for high dimensional function optimization is
presented in Chu et al. (2008). The proposed
algorithm combines the foraging mechanism of
E-coli bacterium introduced in bacterial foraging
algorithm with the swarming pattern of birds
in block introduced in PSO. It incorporates the
merits of the two bio-inspired algorithms to
improve the convergence for high dimensional
function optimization. A new parameter called
attraction factor is introduced to adjust the
bacterial trajectory according to the location of
the best bacterium. An adaptive step length is
adopted to improve the local search ability.

Zhang and Yi (2011) proposed a scale free
fully informed PSO algorithm. In the proposed
algorithm, a modified Barabási-Albert model
is used as a self-organizing construction
mechanism, in order to adaptively generate
the population topology exhibiting scale free
property. The swarm population is divided into
two sub-populations: the active particles and the
inactive particles. The active particles fly around
the solution space to find the global optima, while
the inactive particles are iteratively activated
by the active particles via attaching to them,
according to their own degrees, fitness values,
and spatial positions. Therefore, the topology
will be gradually generated as the construction
process and the optimization process progress
synchronously. Moreover, the cognitive effect and
the social effect on the variance of a particle’s
velocity vector are distributed by its contextual
fitness value, and the social effect is further
distributed via a time-varying weighted fully
informed mechanism.

In Lin et al. (2014), a hybrid of both genetic
algorithm and PSO algorithm is proposed.
Genetic algorithm aims to cover every region
of the search space while PSO searches the
neighborhood to further prune the good
solutions. This proposed approach is used
for high dimensional extensive subspace
clustering because it can improve clustering
quality by removing irrelevant and redundant
dimensionality in high dimensional clustering
problems.

In order to find a near optimal Latin hypercube
design, Aziz and Tayarani-N (2014) proposed a
new version of PSO algorithm, which uses a
population based optimizer as the evolutionary
part and a multiple local search procedure as
the refinement part of the algorithm. To manage
the problem constraints, the proposed algorithm
utilizes a ranked order value rule, which converts

the continuous space of solutions into the point
permutation space. Furthermore, to maintain
the population diversity, the meta-Lamarckian
learning strategy is applied to the local search
procedure of the algorithm.

Tang et al. (2014) proposed an improved quantum
behaved PSO algorithm for continuous nonlinear
large scale problems based on memetic algorithm
and memory mechanism. The memetic algorithm
is used to make each particle gain some
experience through a local search before being
involved in the evolutionary process, and the
memory mechanism is used to introduce a so-
called ’bird kingdom’ with memory capacity, both
of which can improve the global search ability
of the algorithm. Each dimension of a particle
updates with the same random number. Thus, the
convergent speed is increased and the local search
ability is enhanced.

Li et al. (2015) proposed a hybrid algorithm,
which combines the local search phase in PSO
with two global search phases in artificial bee
colony for the global optimum, to address high
dimensional optimization problems.

Gong et al. (2016) introduced a discrete PSO
algorithm for resolving high order graph
matching problems, which incorporates several
redefined operations, a problem specific
initialization method based on heuristic
information and a problem specific local search
procedure.

Ouyang et al. (2016) presented a hybrid harmony
search PSO with global dimension selection
for improving the performance of PSO. In
the presented PSO, a new global velocity
updating strategy is introduced to enhance
the neighborhood region search of the current
best solution and to get a better trade-off
between convergence rate and robustness.
Additionally, a dynamic nonlinear decreased
inertia weight is utilized to balance the global
exploration and local exploitation. Moreover, the
improvisation mechanism of harmony search
is implanted in the presented algorithm and
a global dimension selection is employed in
the improvisation process, which can effectively
accelerate convergence. Global best information
sharing strategy is developed to link the harmony
search PSO two layer exploration frames.

3.2.7 Discussion

Non-dimensional reduction based ensemble evolution
approaches focus on special divide-and-conquer
strategies for high dimensional problems. Among these
approaches, biological mechanism based methods,
neighborhood topology based methods, local search
based methods, sampling based methods, social
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learning methods and hybrid cooperation based
methods are playing different roles in tackling high
dimensional problems. The biological mechanism
based methods and the hybrid cooperation based
methods gain more prominent popularity. Newly
emerging biological evolution strategies are more
popular with researchers and are easily implemented
in reality, while hybrid evolution algorithms are
mutually complementary, collaboratively progressed
and comparatively complicated. Although the
neighborhood topology based methods focus on the
dynamic neighborhood topology to avoid premature
convergence, their steps together with other relevant
clustering, learning incorporated methods are rather
difficult. The local search based methods are tightly
related to the neighborhood topology based methods
because they usually exploit dynamic and randomized
neighborhood topologies to choose the exploitation
and exploration conditions so as to improve their local
searching ability. The sampling based methods stress
heterogeneous data via boundary handling techniques
and guided initialization schemas. Unlike classical PSO
variants, the social learning methods introduce social
learning mechanisms into PSO to develop a social
learning PSO. In contrast to individual learning, social
learning has the advantage of allowing individuals to
learn behaviors from others without incurring the costs
of individual trials and errors.

3.3 Empirical analysis and comparisons of different
approaches

The typical PSO approaches for large scale
problems are reduced to two categories: dimensional
reduction based cooperative coevolution approaches
and non-dimensional reduction based ensemble
evolution approaches. Since the former approaches
solve large scale problems through problem
decomposition, subcomponent optimization and
cooperative combination, they generally consume less
computational cost than the latter approaches do.
However, the number of the former approaches is
less than that of the latter approaches. Among the
former approaches, two kinds of more successful
random dynamic grouping methods which are CCPSO
presented by Li and Yao (2009) and CCPSO2 proposed
by Li and Yao (2012), are paid much more attention
to. The scalability of CCPSO on high dimensional
nonseparable problems may be up to 1000 dimensions.
Moreover, CCPSO2 performs significantly better than
a state-of-the-art evolutionary algorithm sep-CMA-
ES on high dimensional problems ranging from
100 to 2000 variables. Compared with dimensional
reduction based cooperative coevolution approaches,
non-dimensional reduction based ensemble evolution
approaches are dependent on divide-and-conquer
strategies for high dimensional problems. They
perform comparably better than dimensional reduction
based cooperative coevolution approaches on higher

dimensional problems ranging from 2000 to 11000
variables. The biological mechanism based methods
are the most successful non-dimensional reduction
based ensemble evolution approaches. CPSO proposed
by Cheng and Jin (2015) achieves a good balance
between exploration and exploitation and effectively
solves problems of dimensionality up to 5000.
GDPSO suggested by Cai et al. (2015) solves large
scale social network clustering problems with 11000
variables. HDBPSOA presented by Banka and Dara
(2015) handles the feature selection, classification and
validation of gene expression data with 7000 variables.
MR-IDPSO selects the optimal composited service from
10000 functionally equivalent services with different
quality of service. From these empirical analysis and
comparisons, it is suggested that when solving high
dimensional problems, we first choose the biological
mechanism based methods among non-dimensional
reduction based ensemble evolution approaches
such as CPSO, HDBPSOA, GDPSO, MR-IDPSO, and
so on regardless of their more computational cost
consumed. Then we consider the random dynamic
grouping methods among dimensional reduction based
cooperative coevolution approaches such as CCPSO,
CCPSO2, and so forth. In addition, the social learning
methods among non-dimensional reduction based
ensemble evolution approaches and the learning based
grouping methods among dimensional reduction based
cooperative coevolution approaches are also taken into
consideration because of their distinctly prominent
performances on high dimensional problems.

4 Conclusion

4.1 Challenges and trends in large scale PSO

With the rapid development of big data, real world
optimization problems with diverse and stringent
constraints have become much more complex. As
driven by the information technology and social
networks, the data volumes of optimization problems
are dramatically increasing. Generally speaking, these
large scale problems can typically be multi-modal.
Accompanied by the increase of the number of decisive
variables, the corresponding search solution space
varies exponentially. Accordingly, the computational
costs in function evaluations are highly expended.
Moreover, benchmark problems and performance
measures are not yet complete and need to be further
developed.

Getting rid of these difficulties has attracted much
interest of a good many researchers and practitioners
in the domain of bio-inspired computation. How to
expand the bio-inspired algorithms to solve large
scale optimization problems, how to reduce the
dimensionality and how to improve the diversity, are
usually and hotly discussed among researchers and
practitioners. So far, they have significantly developed a
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great number of bio-inspired algorithms to tackle large
scale optimization problems. In this paper, we provide
a comprehensive review on large scale PSO, which
includes description and formulation of canonical
PSO for large scale optimization problems, recent
achievements of large scale PSO, challenges, trends
and future work of large scale PSO. The large scale
PSO algorithms are described to present the algorithmic
development and their applications. As far as the
dimensional reduction based cooperative coevolution
approaches are concerned, although static grouping
methods present a new cooperative coevolution
framework and lay a solid basis of developing a generic
divide and conquer methodology, dynamic grouping
methods play a more important role in solving real
world large scale optimization problems because of
their better performances. However, for the non-
dimensional reduction based cooperative coevolution
approaches, most relevant studies are concentrated
on two types of modifications such as defining
new biological mutation, selection and crossover and
proposing innovative hybrid cooperation during the
evolutionary process. In addition, social learning PSO is
also worthy of being considered.

4.2 Future work in large scale PSO

Despite the success of large scale PSO in recent years,
there exist many unsolved problems which will be more
likely to have a huge impact on the further research
and progress. We highlight these important matters as
follow:

• Obviously, all large scale PSO theories are helpful
to gain insight into the evolutionary mechanisms
of large scale PSO algorithms. But the theoretical
studies about large scale PSO still lag their
applications.

• Distribution of particle swarm big data is
expected to be investigated so that more intensive
big data mining techniques can be adopted to
participate in carrying out some true applications
like fault detection and filtering as well as image
processing.

• Besides, the theoretical analysis of the
optimal grouping and its characteristics in
the dimensional reduction based cooperative
coevolution framework needs consideration.

• Otherwise, large scale PSO benchmark functions
should be further balanced and be more similar
to the truly real world optimization problems,
especially in their dynamic characteristics.

• To the end, it is worth noting that combinatorial
problems can be derived from quite different
areas and applications in reality and are highly
required to be solved by large scale PSO.
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