An Indecisiveness in Problems of Machine Learning and Artificial Intelligence


Aleksa Svetozar Srdanov


The problem of indecisiveness is integral part in each scientific research. However, it is still not a certainty whether this problem has an objective nature. In this paper we will extend the analysis of the sources and causes of indecisiveness and define the new categories that are a stumbling block in writing high quality software. Based on a sample, we will propose several ways to classify indecisiveness. Specifically, we will investigate indecisiveness related to a human, machine and environment. In some cases, it is possible to distinguish between remediable and unavoidableindecisiveness depending on the cause.


Indecisiveness; Artificial Intelligence; Machine Learning




  1. Ralston A, Reilly ED, Hemmendinger D. Encyclopedia of Computer Science 2000; 4th ed., Wiley.
  2. Milosavljević M. Artificial intelligence. Univerzitet Singidunum, Beograd (in Serbian) 2015.
  3. Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, et al. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing 2019; 2(2): 83-93. doi: 10.3934/mfc.2019007.
  4. Aleksa Srdanov, Nada Ratković Kovačević. Undecability in problems of artificial intelligence. IT Zabljak 2016; 157-160. (in Serbian).
  5. Jech T. Set theory. New York: Academic Press 1978.
  6. Sipser M. Introduction to the theory of computation. Third edition, Cengage Learning, USA 2012.
  7. Manfred Kudlek, Yurii Rogozhin. A universal turing machine with 22 states and 2 symbols. Romanian Journal of Information Science and Technology 1998; 1(3): 259–265.
  8. Liesbeth De Mol. Turing machines. Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.) 2009. PDF version of the entry Turing Machines: uring-machine/
  9. Aleksa Srdanov, Nada Ratković Kovačević, Selena Vasić, et al. Emulation of artificial intuition using random choice and logic. 13th Symposium Neurel 2016. doi: 10.1109/NEUREL.2016.7800114
  10. Filip Morić, Ilija Lalović. Gödel's theorem on incompleteness and the problem of termination of programs and games. MAT-KOL (Banja Luka) 2014; 20 (3): 123-135. (in Serbian).
  11. Stefanović R, Srdanov A. Using a computer to decrypt messages. Vojnotehnički Glasnik 2014; 62(2): 96-108. (in Serbian).
  12. Stefanović R, Srdanov A. Unspecified conditions in the implementation of algorithms in solving logical problems. Proceedings of the International Conference on Information Technology IT 2015; pp: 76-79. (in Serbian).
  13. Cohen Paul J. The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America 1963; 50(6): 1143–1148.
  14. Michael Glanzberg. Truth. The Stanford Encyclopedia of Philosophy (Fall 2018 Edition), Edward N. Zalta (ed.), last modified on Aug 16, 2018.
  15. Andrzej Jarczewsk. The verbal philosophy of real time. Cambridge Scholars Publishing. UK 2020; pg: 105.
  16. Efimov NV. Higher geometry. Nauka, Moskva 1978. (in Russian).
  17. Manin YI. Provable and unprovable. Kibernetika, Moskva 1979. (in Russian)
  18. Bertrand Russell. The Monist 1919; 29(3): 345-380.
  19. Church A. An unsolvable problem of elementary number theory. Bulletin of the American Mathematical Society 1936; 58: 345-363.
  20. Reingold EM, Nievergelt J, Deo N. Combinatorial algorithms theory and practice. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 1977.
  21. Manin YI. Computable and incalculable. Kibernetika, Moskva 1980. (in Russian).
  22. Oron Shagrir. Godel on turing on computability. Departments of Philosophy and Cognitive Science, The Hebrew University of Jerusalem 2002.
  23. Godel K. The consistency of the continuum hypothesis. Princeton University Press, NJ 1940.
  24. Julian F. Fleron. (1999). Gabriel's wedding cake. The College Mathematics Journal 1999; 30(1): 35-38. doi: 10.1080/07468342.1999.11974027
  25. Falconer K. Techniques in Fractal Geometry. John Wiley and Sons: Hoboken, NJ, USA 1997.
  26. Aleksa Srdanov, Dragan Milovanović. Decomposition of the sudoku solution algorithm. IT Zabljak 2016; 153-156. (in Serbian).
  27. Ljašenko NY, Kozin AC. Basics of programming. Kiev 1979. (in Russian).
  28. Stewart I. Concepts of Modern Mathematics. Pengium Books, London 1975.
  29. Jurafsky D, Martin J. Speech and language processing: An introduction to natural language processing. Speech Recognition, and Computational Linguistics, 2nd ed. 2008. Upper Saddle River: Prentice Hall, NJ.
  30. 14. 01. 2016.
  31. Thomas W. (1997). Languages, automata, and logic. Springer 1997; Vol. 3, Chap. 7.
  32. Addison JW, Moschovakis YN. Some consequences of the axiom of definable determinanteness. Proc.Acad. Sci. U.S.A. 1967; 59: 708-712.
  33. Turing AM. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 1937; series 2, 42: 230-265—A correction (ibid. 43: 544–546).
  34. Hajek P. Metamathematics of fuzzy logics. Kluwer Academic Publisher, Dordrecht/London 1998.
Copyright © 2020 Aleksa Svetozar Srdanov

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


  • There are currently no refbacks.