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ABSTRACT
Complex systems are the emerging new scientific frontier with modern technology advance and new parametric

domains study in natural systems. An important challenge is, contrary to classical systems studied so far, the great
difficulty in predicting their future behaviour from initial time because, by their very structure, interactions
strength between system components is shielding completely their specific individual features. Independent of clear
existence of strict laws complex systems are obeying like classical systems, it is however possible today to develop
methods allowing to handle dynamical properties of such systems and to master their evolution. So the methods
should be imperatively adapted to representing system self organization when becoming complex. This rests upon the
new paradigm of passing from classical trajectory space to more abstract trajectory manifolds associated to natural
system invariants characterizing complex system dynamics. The methods are basically of qualitative nature,
independent of system state space dimension and, because of its generic impreciseness, privileging robustness to
compensate for not well known system parameters and functional variations. This points toward the importance of
control approach for complex system study in adequate function spaces, the more as for industrial applications there is
now evidence that transforming a complicated man made system into a complex one is extremely beneficial for overall
performance improvement. But this last step requires larger intelligence delegation to the system requiring more
autonomy for exploiting its full potential. A well-defined, meaningful and explicit control law should be set by using
equivalence classes within which system dynamics are forced to stay, so that a complex system described in very
general terms can behave in a prescribed way for fixed system parameters value. Along the line traced by Nature for
living creatures, the delegation is expressed at lower level by a change from regular trajectory space control to task
space control following system reassessment into its complex stage imposed by the high level of interactions between
system constitutive components. Aspects of this situation with coordinated action on both power and information fluxes
are handled in a new and explicit control structure derived from application of Fixed Point Theorem which turns out
to better perform than (also explicit) extension of Popov criterion to more general nonlinear monotonically
upper bounded potentials bounding system dynamics discussed here. An interesting observation is that when correctly
amended as proposed here, complex systems are not as commonly believed a counterexample to reductionism so
strongly influential in Science with Cartesian method supposedly only valid for complicated systems.
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1. Introduction
1.1 As observed by paleontologists, human kind very early designed for

survival adapted tools extending the action of his hand, a trend since continued up
to the extraordinary advance in modern technology during the last decades soon
after World War II. Despite drastic change over the centuries, a basic economic
competition has been always remaining, inevitably leading to research of higher
and more secure performances for overall considered processes. At each step direct
action of human operator has been transferred to the tool first, to the machine later.
The delegation from human operator to his machine was mainly concerning
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efficiency, accuracy, power, and safety, all of technical nature. It is now concerning
decision and coordination of action, ie of intelligence, with correlatively some
machine autonomy, leaving a supervisory position to operator. After the ascent of
industrial civilisation in last two centuries, recent advance of modern today
technology has produced base components with unsurpassed performance,
implemented in new extended systems. They gather very heterogeneous elements
each in charge of a part of system global action. For economic efficiency they are
directly integrated in the design, with extremely strong mutual interactions
definitely conditioning final system output. Thirty years ago mechanical devices in
charge of necessary information flux inside the system have been replaced by
electronic more powerful ones, much easier to operate safely in different
environments and carrying much more information, giving rise to Mechatronics[1].
In recent years Information Technologies have deeply modified the possibility to
connect system elements between themselves and to distant bases for collecting
and/or producing needed information for system action. This is summarized on
Figure 1, where Block 1 is corresponding to the millennium long development
of base system, Block 2 describes the structure of controlled system with recent
mechatronic components, and Block 3 is representing the present next step toward
system independence.

1.2 At early beginning the main concern was
improvement of delivered power through management
and regulation of its flux inside the system, whereas with
last two steps the accent is now on information flux
organization unavoidable for both control and
autonomous decision. New conditions concerning
information handling have to be satisfied for storing and
dispatching it with adapted hardware, as well as specific
tools for its correct manipulation for the coming step of
autonomous intelligent action, whether the systems are
networked[2] or not. So new requirements are emerging
for necessary improvement of information flux
circulation in all aspects related to present step
delegation for more autonomy and intelligence into
produced artefacts. The delegation could take different
aspects and levels[3] up to complete replacement of
human intelligence in highest futuristic stage. Here a
modest step is considered first as the problem is also
concerning system dynamics as well, and more
importantly trajectory definition. As explained later,
system trajectory is escaping from operator capability,
contrary to previous classical case where it is possible to
set input system control for following a prescribed
trajectory. Observation of living creatures clearly shows
the importance of well identified sequences, separable in
as many tasks during the development of their current
life. Similarly, man-made machine activity can also be

split in units corresponding to accomplishment of a
specific task, whose combination is often needed for
reaching the goal assigned to the machine. As many
trajectories are associated to a task, the problem is no
longer one-to-one and the difficulty for the system is to
define its own trajectory once the elementary task
has been assigned. To operate the system in task space
instead of classical trajectory space, earlier methods are
not fully adapted. On the other hand, in parallel to man
made transformation, research has been reaching
domains where the behaviour of studied objects is itself
strongly depending on interactions between elementary
components[4]. The strength of interactions can even
completely mask elementary interactions between basic
components, and final system behaviour is, due to
importance of nonlinearities, generally outside the range
of application of classical methods. This is
understandable inasmuch as the system often reaches its
stage after exhibiting a series of branching along which it
was bifurcating toward a new global state the features of
which are not usually amenable to a simple local
study, being remembered that the branching phenomenon
is resting upon a full nonlinear and global behaviour. In
the following, some aspects of the problem raised by
giving the systems autonomous intelligence will be
discussed, and in particular to what extend IT can be
useful for this major step.

http://creativecommons.org/licenses/
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2. The New Paradigm

2.1 First is the understanding that adding a new,
over designed, layer on top of previous ones when using
recent technology is not simply possible for system
transformation toward more autonomous intelligence.
Lower level layers should also be reorganized to fit with
the new role they have to play in the presence
of branched states. Various attempts have been proposed
so far to deal with the handling of new bifurcated
phenomena, both in Applied Mathematics and in Control
methods. In first class, results[5] on “chaotic’’ state show
that the later represents the general case of nonlinear non
integrable systems[6], and that it is reached for high
enough value of (nonlinear) coupling parameter. In
second class are belonging extensive new control
methods often (improperly) called “intelligent’’[7],
supposed to give systems the ability to behave in a
much flexible and appropriate way. However these
analyses, aside unsolved stability and robustness
problems[8], still postulate that system trajectory can be
followed as in classical mechanical case, and be acted
upon by appropriate means. In present case on the
contrary, the very strong interaction between components
in natural systems induces as observed in experiments a
wandering of trajectory which becomes indistinguishable
from neighbouring ones[9], and only manifolds can be
identified and separated[10]. So even if it could be tracked,
specific system trajectory cannot be modified by any
action at this level because there is no information
content from system point of view, as already well
known in Thermodynamics[11]. Similar situation occurs
in modern technology applications to give now systems
the possibility to decide their own trajectory for a fixed
task assignment and for which there exists in general
many allowed trajectories. In both cases there is a shift to
a situation where the mathematical structure generates a
manifold instead of a trajectory, now needed for fulfilling
technical requirements in task execution under imposed
(and often tight) economic constraints. This already
corresponds to a very important qualitative jump in the
approach of highly nonlinear systems, and requires
proper tools for being correctly handled.

Strikingly Nature has been facing this issue a
few billion years ago when cells with DNA ‘’memory’’

molecules have emerged from primitive environment.
They exhibit the main features engineers try today to
imbed in their own constructions, mainly a very high
degree of robustness resulting from massive parallelism
and high redundancy. Though extremely difficult to
understand, their high degree of accomplishment may
provide interesting guidelines for technical present
problem. So the consequences of enhanced interaction
regime between components in a system as concerns its
control have to be clarified. In particular, the control
inputs in man-made systems will be considered as
elements of a more general control space, which can be
defined on a reasonable and useful physical base. Then
classical control problem[12] with typical control loops
guaranteeing convergence of system output toward a
prescribed trajectory fixed elsewhere, shifts to another
one where the system, from only task prescription, has to
generate its own trajectory in the manifold of realizable
ones. A specific type of internal organisation has to be set
for this purpose which not only gives the system
necessary knowledge of outside world, but also
integrates its new features at system level[13]. This means
that the new controller should handle the fact that
trajectory is not prescribed as before but belongs to a
manifold related in a meaningful way to the task.

2.2 In summary, classical control line cannot be
continued by adding ingredients extending previous
results to new intelligent task control. Another type of
demand is emerging when mathematically passing from
space time local trajectory control to more global
manifold control. Some results are today available but
the corner stone is to give the system its own
intelligence based on its own capacities rather than usual
dump of outer operator intelligence into an unfit
structure. The next question of selecting appropriate
information for task accomplishment and linking it to
system dynamics has also to be solved when passing to
manifold control by defining “useful information”[14]. A
possibility is to mimic natural systems by appropriately
linking system degrees of freedom for better functioning,
i.e. to make it “complex”. Another class of problems is
related to manipulation of information flux by itself in
relation to the very fast development of systems handling
this flux. Overall, a more sophisticated level is now
appearing which relates to the shift toward more global
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properties “intelligent” systems should have. At each
level of structure development, the system should satisfy
specific properties represented in corresponding well
defined mathematical terms :

a)-asymptotic stability for following imposed
command, corresponding to Block 1 in Figure 1,

b)-robustness for facing adverse environment,
corresponding to Block 2,

c)-determinism at task level, corresponding to Block 3
for guaranteeing that action is worth doing it.

Prior to development of more powerful hardware
components, the problem should be solved by proper
embedding into the formalism of recent advances in
modern functional analysis methods in order to evaluate
the requirements for handling this new paradigm. Point a)
corresponds to classical system control[15] typically
schematized on Figure 6a. For most nonlinear systems it
is generally depending on rarely explicit Lyapounov
method despite a gigantic effort over more than a century.
For point b), typically represented on Figure 6b, it will
first be shown below that, though it is usually non
compatible with point a) in classical approach , first two
properties a) and b) can be merged by using manifold
control developed in Appendices. Concerning point c),
typical system control structure complying with
autonomous decision property is displayed on Figure 6c.
Determinism property specific of necessary information
handling at this level will be discussed afterward in the
framework of IT with its restrictions, and very difficult
questions still under study especially in the domain of
embedded autonomous systems which are playing an
always larger role in modern human civilisation.

Figure 1. System Structure Evolution with Main

Component Parts :
Block 1 Corresponds to Millennium Long Development of

Base System
Block 2 Represents the Structure of Controlled System with

Mechatronics Components
Block 3 Includes Present Next Step toward Larger System

Independence

Figure 6a. Simplest Classical Feedback Control Scheme
at Block 1 of Figure 1.

A Modifying Box May also Act on Return Loop R

Figure 6b. Classical Improved Feedback Control Loop
with Adaptive Box at Block 2 of Figure 1

Figure 6c. Intelligent Control Structure at Block 3 of
Figure 1 with Decision Centre (here with Fuzzy type
Reasoning) Transferring Order To System (Link 3),

Storage Unit (Usually Neural Type Structure) for
Shortening and Backing up Decision (Link 2) and Classical
Previous Control Loop (Link 1).

Note that Main Difference with Figure 6ab is that Desired
Output Sd(t) is now

Internally Fixed by System Itself, and not Given from
Outside as Before.
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3. The Approach to Complexity

3.1 To proceed, it is necessary to understand the
consequences for control of the wandering nature of
system trajectory when becoming complex. As
neighbouring trajectories are becoming indistinguishable,
the information content in their observation vanishes, so
there is no information loss when abandoning their
detailed observation. But as the number of degrees of
freedom (dof) has not changed (or may become larger
at branching), the conclusion is that the system is
reaching a new stage where some of the dof are now
taken care of by internal system reorganisation, see
Figure 4. They are moreover in sufficient number so that
the only necessary inputs to drive the system are the ones
defining the manifold on which system dynamics take
place. This self-organisation reducing possible action
onto the system from outside is very fundamental[16]. It
expresses the simple fact that at higher interactive
level between its components, the system can no longer
stand with all its dof controlled from outside, but takes
itself part of their control in a way which continues its
existence. This is not usual textbook case of control with
a smaller dimension input control than system dimension.
Here because some inputs are just changing from outside
to inside the system, they cannot be maintained unless
they are in conflict with the new internal organisation
fully determining them already. This situation is
extremely important as it corresponds to the general case
of natural systems, and is accompanying the change into
so-called dissipative structure[17].

Figure 4. Clustered System Components (in Complex State)
are only Globally Interacting

Through their Cluster with Other Interior and Exterior

Components (Dashed Links)

The systems in reorganised (and partly
self-controlled) situation are complex ones[18] (from latin
root – cum plexus: tied up with), by opposition to simple
ones completely controllable from outside. Past some
level of complication (note its different meaning from
complexity), natural systems necessarily become
complex once interactions get large enough. The critical
threshold for this change can be explicitly stated in terms
of system parameters[19], and is shown to correspond to
each observed system structure change in as different
domains as Physics, Chemistry, Applied Mathematics,
Biology, Sociology and Economy[20]. So determining this
natural exchange makes it possible to take advantage of
complex structure by accepting the compromise to
reduce the outer control action to the only dof left free
after system reorganisation, as there is no information
loss in the process which leads to hierarchized system
structure[21]. On the other hand, technical systems with
large number of dof have to be constructed for
accomplishment of complex enough tasks, and evidently
the resulting high degree of complication makes the
control of such systems very fragile, if not strictly
impossible when interactions are becoming large enough
for some actual operating parameters under the pressure
of “economic’’ constraints. In mathematical terms, the
mixed system representation with a random background
noise generally used to mock up this situation does no
longer apply[22], see Figure 5. It usually corresponds to
simple stability result strongly depending on maximum
acceptable gain by system actuators and here over passed,
calling for another more dynamically detailed
representation[23]. The situation described above provides
the possibility for man-made systems to exist in a useful
and manageable way, with a different approach to system
control mainly based on a compromise to avoid too
severe constraints on system dynamics, as this is the only
workable way for maintaining system existence. Here
design parameters, independently fixed in previous
scheme, are now determined by the final
pre-assigned behaviour when including internal loops
corresponding to dof linkages making the system
complex. So there is no clear distinction between design
and control parameters. This global approach, often
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called “optimal design”, should be developed in adequate
functional frame as only manifolds, and not trajectories,
are now accessible[24]. On the other hand it guarantees
locally asymptotic stability of trajectories within a
robustness ball the size of which is fixed by the
parameters of an equivalence class including the system
at hand as an element.

Figure 5. Schematic Block Structure of Complex Type
System with Convective and Diffusive Parts and Feedback
Link R between them often Mocked up by Averaged Transports
Evaluated by Supposing Complete Randomness of Small
Modes for all Times (Chandrasekhar Hypothesis)

3.2 The next step is to find the link at system
level between task definition and the manifold of
(self-organised) trajectories the system can only follow.
For living organisms, this property is hardwired into
the brain representation of the environment and of the
living being itself from experience through their sensory
and nervous systems. On the other hand, they have broad
range sensors and they filter for each task the relevant
information (called ‘’useful’’ here) needed to guide their
trajectory. These two properties will be reproduced at
system level by first defining a functional of system
trajectories expressed in terms of the only invariants
characterising the manifold on which they are lying,
and by constructing a functional control law which only
acts at manifold level. This is possible by considering
now a complete trajectory as a ‘’point’’ on a function
manifold x = x(.)  E, rather than usual succession of
positions x(tj) for each time tj . In this view, stability is
obtained as the belonging of x(.) to a pre-selected
function space S expressed through a fixed point
condition in this space, see Figure 7. Then derivatives of
the functional with respect to task parameters give
system sensitivity to the task and provide the filter matrix
selecting the relevant manifold for task
accomplishment by the system. General expressions are
found by application of Fixed Point Theorem[25] which

can be shown to contain as applications most published
results since Lyapounov and Poincaré pioneering work[26],
see Appendix A. From these elements, the control
structure can be constructed with its various parts, see
Appendix B. For constant bounds, another control law
can be found in explicit analytical form by extension of
Yakubovic-Kalman-Popov (YKP) criterion[27] to general
non-decreasing more accurate bound[28], see Appendix C.
Both laws give explicit asymptotic stability limit and
define the robustness equivalence class within which the
property holds, and as expectable the first law is shown
to include the second one which may nevertheless be
interesting as it has a different expression.

Figure 7. Generating Scheme of Solution xS(t, xS(0),u(t),d(t))
from Knowledge of Control Functions u(t)  U and
Disturbances d(t)  D. Determination of Subspaces D’  D, U’
 U so that xS(t)  S is Done by Application of Fixed Point
Theorem in Adequate Function Spaces

4. The New System Structure

4.1 Following the scheme developed above, the task
controller structure corresponding to Block 3 in Figure 1
to be developed now comprises the information filter
selecting the task relevant information from system
sensors, see Figure 2. The basic postulate is here that the
knowledge of both information and power fluxes at each
instant completely determines a system[29]. To escape
from “inanimate" world where information flux is rigidly
linked to power flux by laws of Physics, the way
followed by Nature at early beginning of Earth existence
has been to split information and power fluxes by
creation of “memory’’ molecules storing an independent
information content, out of which existence of living
creatures able to perform their own tasks has been made
possible. In present case also, the system should have the
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possibility to escape from previous situation by
modifying its behaviour for adapting to adverse effects,
whether of internal or external origin, opposing to task
accomplishment. So even if usual system control at level
of Block 2 proves with robustness to be usually efficient
for restoring prescribed trajectory[30], further increase of
system performance requires a new degree of autonomy
for building its own strategy. An apparently simple
possibility would be to give human operator the required
information for efficient system drive[31]. However, due
to ergonomic constraints and to various limits on
technical response times, this action has a limited
potential as it does not properly delegate enough freedom
to adequate system level for full exploitation of its
technical capabilities. Consequently the problem is not
only to give the system proper information collected
from sensors now utilized in various displays by human
operator, but more importantly to put them in a format
compatible with system own dynamics.
Comparison between human eye, extremely useful to
human operator due to very remarkable brain
organization, and machines with camera and recognition
software stresses the importance to verify that delivered
information matches with system possibility of action.
Though not possible at general goal level, the only
necessary step is to manage system organization so that
delivered information meets with each specific task
sub-level. In present case this rests upon the concept of
"useful" information I[32] to be internally filtered by the
system for retaining the only elements relevant for actual
action, see Figure 2. As stressed above, internal system
dynamical effects cannot be distinguished between one
another in general case. Using their observation to
improve system dynamical control is not possible, in the
same way as observing individual molecule motion in a
fluid would not improve its global control. So increasing
the amount of information from sensors as commonly
developed is not the solution. Only relevant information
has to be collected, and this justifies why raw sensor
information has to be filtered so that only useful
information for desired task accomplishment is selected.
This is precisely the remarkable capability of living
systems to have evolved their internal structure so that
this property is harmoniously embedded at each level of
organisation corresponding to each level of their

development. Mathematically, usefulness of information
rests upon calculating ‘’utility’’ u of events for task
accomplishment given by absolute value of logarithmic
derivative of Lyapunov function L(T) selecting
trajectories T of manifold M(T) inside allowable
workspace domain D meeting task requirement. When
expressed in terms of problem parameters and system
invariants of trajectories, it automatically selects as most
useful the elements against which the system exhibits
larger sensitivity. As indicated later, sensitivity threshold
has to be fixed so that resulting uncertainty ball is inside
attractor ball corresponding to asymptotic stability of
system trajectories. Elimination of elements to which the
system is insensitive prior to any calculation in control
unit enormously reduces computation load. In all cases
useful information is completely explicit once the system
is fixed. When adverse effects are acting, their
interaction with the system are changing its dynamical
equations and the domain D(T) is no longer fully
available. The remaining domain Dc(T) is determined by
a new Lyapunov function Lc with the controller
guaranteeing asymptotic stability of new system
trajectories, from which a new utility function uc and the
new constrained useful information Ic can be explicitly
written. Useful information is thus a class property
characterizing from their invariants a family of possible
trajectories in workspace which have their representation
determined from dynamic and/or general geometric
properties.

Figure 2. System Structure with Main Components Parts
and Information Filtering for Task Orientation

4.2 Because of 1)-operation at task level and
2)-trajectory non distinguishability in general complex
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system, a functional control is defined guaranteeing the
trajectory to belong to a selected functional space
corresponding to researched properties. For finite
dimensional nonlinear and time dependent systems
explicit expressions for controller CF are obtained in
terms of system global characteristics, and exhibit robust
asymptotic stability inside the desired function space
under mild conditions by application of Fixed Point
Theorem[33]. Specific exponential convergence decay[34]

and extension to unknown systems[35] are more generally
possible. The controller CF

u(t) =  Ke + u (1)
is the sum of a linear PD type part and an ad-hoc
nonlinear part depending on the distance of actual
trajectory to allowed manifold trajectories M(T), and
where e is the trajectory error with respect to nominal
one belonging to M(T). The role of additional u is to
counteract the effect of nonlinear and disturbed
remaining parts in system equations, and to define an
asymptotic stability ball within which all system
trajectories are guaranteed to stay inside selected
manifold M(T). This is very clear on the expression of
upper bound on derivative of adapted Lyapunov function
along system trajectories by the sum of an attractive
spring resulting from controller action and usually
repulsive force representing system effect[36]. The
controller is functionally robust as it only implies a
global bounding function of nonlinear terms, which
means that all systems with same bounding function
will be asymptotically controlled by CF. With this
controller CF working at trajectory level T it is possible
to design the block diagram of task oriented control
displayed on Figure 3. Independent of lower level
controllers inside local subsystem such as actuator and
effector boxes to be tuned aside, it mainly implies, on top
of the functional controller loop (1) guaranteeing
required trajectory following, a second higher level loop
(2) of decisional nature based on information Ic which
verifies that the system is actually following a
trajectory belonging to the manifold M(T) corresponding
to the assigned task, and opens a search toward this class
when conditions are changing. The search can be
conducted by interpolation within a preloaded neural
network covering the different possible situations over
the workspace. In present scheme actual trajectory

followed by the system is not necessarily unique, as there
is in general a class of allowed trajectories associated to
a task, provided it belongs to asymptotic robustness ball
for this (explicit) trajectory controller. So controlled
system dynamics are defining a trajectory which is
followed until it would escape without controller from
acceptable manifold corresponding to the defined task
and selected by useful information Ice. A constraint
may be further added to limit or to minimize useful
information Ice if required, but the correlative restriction
of acceptable trajectory manifold occurs at the expense
of system adaptation, so a smooth constraint is often
more appropriate if any.

The important point is that the various elements in
the chart of Figure 3 have been constructed so that 1)-
they are explicitly expressible in terms of system
parameters (or can be reconstituted if unknown) and 2)-
they are linked together in completely coherent way
through consideration of trajectory as a whole appearing
as the good "unit", both qualities needed to create
adequate link between the two loops for transferring
decisional power, ie "intelligence", to the system. In this
sense the system is given its own task consciousness as it
does not obey here a strict step by step outer command.

Figure 3. Structure of Filtering Block of Figure 2 with Task
Oriented Control

5. Overall System Determinism

5.1 Intelligence transfer required for system
autonomy rests here upon observation that for qualitative
improvement of system behaviour it is necessary to give
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the system broader information on itself and its
environment for better definition of its “next” step. There
are two main aspects in this statement. One is dealing
with (usually) long run system structure transformation
for better adaptation to its task, as for living species
during their evolution, and considered today for man
made systems such as factories[37]. The other is more
modestly in system organization for immediate action, as
it is discussed here. So in the threefold system
representation of Figure 1, the sensor-computing-control
part is now taking the important share beyond
“Mechatronics” step, by larger role of communication
network carrying information inside and outside the
system when linked to other ones in networked mode[38].
Handling information flux takes two aspects related to
safety. One is concerning task fulfilment in a time
compatible with global goal achievement, especially with
real time embedded systems, the other with problems
related to uncertain system action impact on environment
and risk evaluation demanding more secure answer from
measurements. Evidently, there is no sense that using
their new emerging collective skill, adults in animal
colony are only bringing back the food for their
off-springs so late that they all die by starvation in the
meantime. Same thing occurs in man made systems in
appropriate terms to give the system adequate
deterministic property, by guaranteeing the (maximum)
time delay between information input and action output.
For real time effecting system, this represents ability to
take advantage of input information before obsolescence
and/or mis-conduction, and to drive fast enough system
dynamics compared to natural system characteristic
response time. The condition is usually analyzed on
system flow chart representing data and information
exchanges in between system components according to
required sub-tasks and taking account of priority and
queueing[39]. When developed on classical threefold
system representation, there results an evaluation of
global system reaction time in terms of components
characteristic times usually satisfied by adapted design of
the later, owing to the breath of available manufactured
components on the marketplace. To illustrate the method
developed in the paper, a fully autonomous robot
has been built up, see Figure 8. The robot is assigned to
realize in a finite fixed time interval T, and at a

prescribed place, the task of constructing an object from
components dispersed on the floor of a initially defined
{L  l} working area, with controller split organization
presented here and following “natural” optimal design
adapted to task requirements[40], in particular, with
carefully chosen size. As obtained from preliminary
analysis it can perform its task in a time Top function of
system parameters, which for specific values, is much
shorter than with usual robots assigned to similar task,
showing the potential interest of the method as it will be
discussed elsewhere.

Figure 8. Front Picture of the Test Robot

5.2 More generally, the situation is tenser when
many systems are networked because of their possible
split response time, leading to very hard and unsolved
resources allocation problems[41], and is worse with
limited resources in autonomous embedded systems like
modern cars produced in automotive industry. In
completely integrated network of acting systems, the
nature of interactions makes the resulting cluster a
complex system again. Analysis of this type of problem
is still in infancy even if some typical network schemes
have been investigated[42]. With the merging of
computers, IT and telecommunications networks,
robotics, distributed systems software and multi
organizational applications of hybrid technology, the
distinction between computers and effecting technical
systems (eg robots, grids, sensors,..) becomes somewhat
arbitrary. In a way similar to energy distribution[43], the
difficulty to distribute intelligence in the network
for better efficiency is still open as it may be more
convenient to conceive a principal intelligence with
dispersed sensors and effectors, each with subsidiary
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intelligence (as for instance robotics-enhanced computer
system), or conversely, it looks more realistic to think in
terms of multiple devices, each with appropriate sensory,
processing, and motor capabilities subjected to some
form of coordination (an integrated multi-robot system).
The key difference is in the complexity and persistence
achieved by artefact behaviour, independent of human
involvement. Going further, the focus will be on the
future generation of technologies in which computers
and networks are integrated into everyday environment,
rendering accessible a multitude of services and
applications through easy-to-use interfaces. Such a vision
of “ambient intelligence’’[44] will place the user - the
individual - at the centre of future developments for an
inclusive knowledge-based society for all. In parallel, the
huge industrial production increase and the
multiplication of production centres is opening the
questions of their interaction with environment and of
the resulting risk, both domains in which scientific
response has been rather modest up to now due to
inadequacy of classical “hard” methods to integrate
properly their global (and essential) aspect.

6. Conclusion

In today industry the demand for higher
performances under economic and environmental
constraints cannot be satisfied by simple upgrade of
previous components. New phenomena related to
handling systems heterogeneity and number of
components have recently opened a broad domain of
investigations on phenomena related to this new structure.
As largely documented, natural systems mostly belong to
the broad class of complex structures when
interaction between system components becomes strong
enough with internal self-organisation minimizing
system dependence with respect to outside world.
System trajectory then becomes more erratic in state
space, and so cannot be distinguished from neighbouring
ones. Only manifolds corresponding to system invariants
can be separated in general, indicating that the number of
outer control inputs is reduced as the system is taking the
other control inputs under their own dynamics. Such a
compromise is a natural trend expressed by the general
principle of autonomy of complex systems, which states
that they naturally evolve as a dissipative structure

toward the state giving them the least dependence on
outside world compatible with boundary conditions. This
is culminating with living systems which, because the
previous compromise forces them to maintain a
metabolism driving them to a finite life, have extended
survival principle to whole species by reproduction. In
this sense, and in agreement with Aristoteles view,
existence of complex systems is the first necessary step
from natural background structure toward independence
and isolation of a domain which could later manage its
own evolution by accessing to life and finally to thought.
In the same way as Nature has been a few billion years
ago able to cross complexity barrier by inventing
“memory” molecules able to store information required
for living creatures development, there is today a similar
problem to design complex systems only able to accept
intelligence delegation for successful operation, as it is
not worth to develop individual highly performing
components without taking advantage of their capability
at global system level. Because both power and
information fluxes are now concerned, different
problems are identified concerning internal system
coordination and control, information flux handling and
communication between a networked cluster of systems.
Analysis of passage to complex stage shows that
previous steps defined for simpler system situation have
to be reassessed for meeting the new requirements
imposed by complex status. In particular for power flux
it is mandatory that asymptotic stability be satisfied
inside a robustness ball of at least the size of system
uncertainty. So, following bottom-up approach described
here, classical trajectory system control should be
upgraded to more adapted task control. The construction
of new controller is made possible in two steps by
developing an explicit trajectory control of functional
nature, which is asymptotically stable and robust enough
to cover the manifold of possible trajectories. Second, by
introducing the concept of ‘’useful’’ information, a task
functional expressed in terms of system parameters is set
up which defines compatible trajectory manifold. From
them a double loop is written giving the system the
possibility to accomplish the task for any allowed
trajectory by determining its path from its own elements.
In this sense it has gained more independent behaviour
and, similar to very advanced living systems, is able to
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operate autonomously at its own level. The next
important step concerning mainly information flux is to
guarantee determinism expressing system ability to
perform its task in acceptable time compatible with
system goal. This problem is solved for internal system
structure by flow chart analysis, but is still
unapproachable when dealing with clusters implying
collaborative networked systems, ie precisely when the
network becomes complex from information flux side, in
contrast with complexity from power flux side discussed
above.
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APPENDIX A
The problem of complex system dynamics can be

reformulated in the following way. Consider the finite
dimensional nonlinear and time dependent systems

)),(),(),(( ttdtutxF
dt
dx

ss
s 

(A1)
where Fs(.,.,.,.) : RnRmRpR1+ Rn is a C1 function
of its first two arguments, xs(t) the system state, u(t) the
control input, and d(t) the disturbance acting upon the
system. In full generality the control input u(t) can be
either a parameter which can be manipulated by operator
action in man made system or more generally an acting
parameter on the system from its environment to the
variation of which it is intended to study the sensitivity.
To proceed, this equation will be considered as a generic
one with now u(.)U and d(.)D, where U and D are
two function spaces to be defined in compatibility with
the problem, for instance Lp, Wnp, Mnp, respectively
Lebesgue, Sobolev and Marcenkievitch  Besicovitch
spaces[45] related to useful and global physical properties
such as energy and/or power boundedness and
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smoothness. Now for u(.) and d(.) in their definition
spaces, eqn(A1) produces a solution xs(.) which
generates a manifold E and the problem is now to
analyze the partitioning of U and D corresponding to the
different (normed) spaces S within which xS(t,
xS(0),u(t),d(t))  E can be embedded, see Figure 7.
When S is Mn2 for instance, simple stability property is
immediately recovered. The base method to express this
property is the use of Fixed Point Theorem in its various
representations[25]. The generality of this approach stems
to the fact that all stability and embedding methods
written so far since pioneering work of Lyapounov and
Poincaré[26] are alternate expressions of this base
property[23]. The problem is easily formulated when there
exists a functional bounding Fs(.,.,.,.) in norm. For
instance, a usual bound (related to Caratheodory
condition in Thermodynamics) is in the form of
generalized Lipschitz inequality[46]

�� �,�,�,� − �� �',�',�',�
≤ ��(�) � − �' �� + �1(�)( �
− �'

∞
+ �2(�) � − �'

∞
)

(A2)
Then by substitution one gets for xs(t) the bound

��(�) ≤ ��(�0) + �0

� �� �' �� �'
�� + R1(�') ��'�

(A3)
with R1(t) = L1(t) �(�) ∞ + �2(�) �(�) ∞ and when
solving for xs(t)

�0
� �1 �' ��' �� ��(�) 2�1 1,��−1,1 + ��−1, − ��≾ ��(�)�
�1 � ��(�) ��

(A4)
with 2F1(,,,z) the Gauss hypergeometric function. So
there is a fixed point xs(t)  L for u,d  L exhibiting
simple stability property. The result extends to more
general non decreasing bounding function g( � − �' ,.)
instead of polynomial one in eqn(A2)[46]. It should be
observed that the obtained global BIBO type bound
found here is sensitive to the way the integral is
performed with respect to upper bounding of the various
terms in the RHS of eqn(A1). With respect to this rough
property, the problem at hand is now to research if there
exists a controller which guarantees robust stability in as
large as possible ball around the origin. The main remark
is that to make the researched jump from BIBO result for

the class of equations considered with appropriate time
dependent bounding functions, only finite power input is
required which is technically doable and justifies the
analysis.

If the function Fs(., ., ., t) is not well known due to
un-modeled internal system phenomena, only a model

dxm/ dt = Fm(xm(t), u(t), 0, t)
(A5)

of system dynamics can be used, with solution xm(t,t0, x0m,
u) and initial condition x0m = xm(t0) simply supposed
to belong to Rn. This constraint may also be relaxed in
specific cases which will not be discussed here. It is
reasonable to suppose that the ”distance” between
Fs(., ., .) and Fm(., ., .) is not too large, and more precisely
that there exists K,L ∈ R1+ so that similar (Lipschitz type)
generalized inequalities[46]

Fs(x, u, d, t) − Fm(x, u, d, t)  ≤ N1(t)gms(  x  ) +
N2(t)u∞ + N3(t) d∞

(A6)
Fm(x, u, d, t) − Fm(x’, u’, d’, t) ≤ Lm(t)gm(x – x’) +

L2(t)u – u’∞ + L3(t)d – d’∞
(A7)

hold on top of eqn(3) for (x, u, d), (x’, u’, d’) ∈ Ω0 × U ×
D, bounded positive time dependent functions Nj(t), Lj(t),
Lm(t), and with Ω0 ∈ Rn the domain where the solution of
eqns(A1) will exist when xs(t0), xm(t0) ∈ Bρ, the ball
centered at the origin with radius ρ ∈ R1+. Using
eqns(A6,A7) one gets

ddms(t)/dt ≤ Lm(t)gm(dms(t)) + Θ(t)
(A8)

with dms = xm − xs and

Θ(t) =N1(t)gms(xs(t)) + (N2(t) + L2(t)) u∞ + (N3(t)
+ L3(t))d(t)∞

(A9)
When xs(t) is stable, Θ(t) is bounded and eqn(A8) is

majorized by

ddms(t)/dt ≤ gm(dms(t)) + SuptΘ(t)Lm(t)
(A10)

Using generalized Bellman-Gronwall inequality, it
follows that

dms(t) ≤ Gms−1Gms(dms(0)) + 0t Lm(t’)dt’ 
(A11)

where Gms(x) =  x  gms(ξ) + Supt(Θ(t)/Lm(t))  −1 dξ,
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showing that  dms(t)  is in general at most bounded.
Model system (m) is in a bounded neighborhood of real
system (s). If (m) belongs to robustness ball of (s) it may
have same asymptotic properties. Determination of this
property in each specific case is thus very important,
such as for instance when Caratheodory condition is
satisfied[46]. Extension to the case where the system is
unknown and the model cannot be set down is possible
with projective methods[35,47].
APPENDIX B

To get the analytical form of the controller CF, a
further step is obtained when representing eqn(A1) close
to a solution xs0(t) obtained for a specific input u0(t) by
eqn(A3) with eqn(A4) gives for error e the form

),,,,()()( 0 tduxeGutBetA
dt
de

ss 

(B1)
when splitting the linear part with xs(t)= xs0(t)+ e(t) and

u(t)= u0(t) + Ke + u
(B2)

It will be supposed that, as very often from physical
reasons, the nonlinear part satisfies the bounding
inequality

),)(()(),,,,( ttegtMtduxeG ssss 

(B3)
and that the linear gain K in eqn(4) is such that the linear
part of the system is asymptotically stable (for time
independent matrices A and B0 this means that A = A0 
B0K is Hurwitz). Supposing there exists positive definite
matrices P and Q such that PA+ATP + dP/dt = Q, one
can define the (positive definite) Lyapunov function

L(xs) =  ePe
(B4)

using the bra ket formalism. Its derivative along system
trajectories is given by

d L(e)/dt =   eQe +  ePBu  +  ePGs
(B5)

Chosing from eqn(B3) the controller form

fPe
PeBgMu

T

ss 





(B6)
where  and  are two parameters and f = f(.) is the
driving function to be defined later, eqn(A4) transforms
after substitution into the inequality

d L(e)/dt    eQe  + Msgs f + Msgs

fPe

PeBPe T








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(B7)
Taking

2
min

2
max

)(

)(

PB

P
T


 

(B8)
the last term on the RHS can be made negative by noting
(X) the eigenvalue of matrix X, in which case eqn(B7)
simplifies to the first two terms in the RHS of eqn(B7) ie

d L(e)/dt    eQe  + Ms(t)gs( )(te ,t) f(e,t)
(B9)

showing the opposite action of the two terms as
discussed in the text. If f (.)gs(.) is upper bounded over
the whole interval, the RHS of eqn(B9) is negative above
some threshold value. On the other hand, because gs(.) is
for regular f(.) a higher order term at the origin by
construction, the RHS of eqn(B9) is negative close to the
origin. So there may exist an interval on the real line
where dL(e)/dt > 0 separating two stable domains. If
f(.)gs(.) is growing at infinity, there exists a threshold
value above which the system is unstable. So there is an
asymptotic stable ball around the origin, and the decay is
fixed by the specific functional dependence of the
functions f(.) and gs(.). The next step is to fix the driving
term f(.) for determining the upper bound on the time
decay of Lyapunov function and finally on the norm of
error vector e(t). As  eQe and  ePe are equivalent
norms, there exists k>0 so that  eQe>  k L(e) and
eqn(A8) can be replaced by

d L/dt   k L + Ms(t) gs(L,t) f(L,t)
(B10)

with new dependent variable L, bounded by the solution
Y(t) of eqn(B10) with equal sign. Here f(.,t) is
immediately determined for given functional form of
gs(.,t) with prescribed Yd(t), but a more useful approach is
to consider the embedding problem where, for given
Ms(t)gs(L,t), a correspondence is researched between
function spaces F and Y to which f(t) and Y(t)
respectively belong with Y fixed by global properties
such as continuity and decay for large t.

The most general way is to use substitution
theorems relating different function spaces[48] and Fixed
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Point Theorem[25]. Supposing that Y(t)  W1p implies
that Ms(t)gs(L,t)  W1q with Sobolev space Wmn[49],
application of Holder inequality shows that there
should be F  W1n with n1 = p1  q1 , 1  p,q,n < 
which relates the decays of f(t) and of Y(t) for large t.
One can then define the driving function f(t) = Y  now
implicit in time through the directly measurable
error bound and get the equation for the sup bound Y(t)
of L(e)
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
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(B11)
where  s(x)=  x dv gs(v)(1. When  s(.) is sub-linear,
sgn(  s(.)) >0, and Y(t) is defined for any [Y(0),t],
whereas if s(.) is super-linear, sgn(s(.)) < 0, and Y(t) is
only defined for [Y(0),t] such that the argument of s(v)(1

does not change sign, ie t < tc defined by

 
tc

s

t

dtthtMdttkY
0

'

0
0 ')'()'(.')'(exp)/(2)( 

(B12)
in order to avoid Lagrange instability in finite time tc.

More specific results can be found for more explicit
constraints. For instance when gs(Y,t)  b(t)Y s with b(.) 
L  and s 1 = q  1   1 the bounding equation for Y(t)
from eqn(B10) becomes a Bernouilli equation with
solution
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with  = s +  , y(t) = Y(t) / Y(0) and normalized time u =
kt, which exhibits a non exponential asymptotic decay
for  < 1 and for any Y(0), and a conditional decay when
 > 1 directly depending on the balance between
recalling linear spring and repulsive nonlinear force, and
defining the attraction domain of eqn(A1) in terms of
actual parameters and initial conditions. The result of
eqns(B11,B12) shows that asymptotic stability can be
found in conjunction with robustness constraint, in
contrast to classical approach, and the role of f(t) which

drives the behaviour of Y(t) is clearly shown. More
importantly, there exists an equivalence robustness class
for all equations having the same bounding equation as
the proposed approach is not focusing on a specific and
single eqn(A1) but on a class here defined with few
parameters. As indicated above, the present analysis
extends in similar form to systems with unknown
dynamics by using nonlinear network representation the
parameters of which are adaptively constructed to
converge toward system representation[35].

The interesting point is the role of the attractive
harmonic potential included in the expression of u(.) in
eqn(B2) defining the attraction class in S. More generally
this suggests the very simple picture of a “test” of
eqn(A1) on a prescribed space S by a set of harmonic
springs over a base set of S. Evidently if the smallest
spring is found to be attractive for actual parameters u(.)
and d(.) the embedding is realized in S. So the
embedding is solely controlled by the sign of smallest
spring, which is an extremely weak and clearly identified
knowledge about the system under study. This opens on
the application of spectral methods which appear to be
particularly powerful here because they are linking an
evident physical meaning (the power flow) with a well
defined and operating method to construct a fixed point
in target space S[23]. Obviously the number of dimensions
of initial system is irrelevant as long as only the smallest
spring force (the smallest eigenvalue of system equation
in space S) is required. In this sense such result which
generalizes Legendre-Dirichlet theorem is far more
efficient than usual Lyapounov method which is a
limited algebraic approach to the problem. Another
element coming out of previous result is the fact that
present approach is particularly well tailored for handling
the basic and difficult problem of equivalence, especially
asymptotic equivalence where system dynamics reduce
for large time to a restricted manifold, and sometimes a
finite dimensional one even if initial system dimension is
infinite as for instance for turbulent flow in Fluids
Dynamics[50]. So asymptotic analysis is also a very
powerful tool for studying complex systems, especially
when they belong to the class of reducible ones[51]. Such
systems are defined by the fact that bifurcation
phenomenon which generates the branching toward more
complex structure is produced by effects with
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characteristic time and space scales extremely different
(and much smaller) from base system ones. So the
system can be split into large and small components the
dynamics of which maintain system global structure
from the first when interacting with the second in charge
of dissipation because they have lost their phase
correlations, hence the name of dissipative structures[17].
As long as they are (usually) small and indistinguishable,
initial values of small components are obeying central
limit theorem and are distributed according to a Gaussian,
see Figure 4. However, it is not possible to neglect at
this stage their dynamics which can on a (long) time
compared to their own time scale act significantly on
large components dynamics, and usual Chandrasekhar
model[22] does not apply here. Small components
dynamics can be asymptotically solved on (long) large
components time scale, and injected in large components
ones. Then system dynamics are still described by large
components, but modified by small components
action[52].

APPENDIX C
When the coefficients A0, B0 and the bounding

function gs of eqn (B1,B3) are time independent, so that
P and Q in Lyapounov equation PA+ATP + dP/dt =  Q
with A = A0 − B0K, the more general (Lurie type)
Lyapunov function[53]

V = < xs, Pxs > +2ητ  0<D,xs>Ψ(ξ)dξ
(C1)

can also be used, with D an adjustable vector and (.) a
nonlinear positive sector function with bound  , ie such
that

()[()  ]  0 (C2)
with τ > 0 and parameter η to be determined later.

Let
Δu = −Ψ(< D,xS >)

(C3)
Its derivative along nonlinear system trajectories is

after substitution given by
dV/dt = < xs, (PA + ATP)xs > −2 < xs, PB > Ψ + 2 < xs,
PGs > +2ητΨ < D, (Axs − BΨ+Gs) > (C4)
By adding k times eqn(C2) the following bound is

obtained
dV/dt ≤ < xs, (PA + ATP)xs >− 2 < xs, (PB − ητATD −

τkD)Ψ > − 2(k + ητ < D,B >)Ψ2 + 2 < xs, PGs > + 2ητΨ <
D,Gs >

(C5)

Now define the linear transfer function Γ(s) =<
D,(sI − Â)−1B >. If there exists η ≥ 0 so that −(1/η) is not
an eigenvalue of Â = A+(P/2)I and if Popov type
condition[54]

k1+ τRe(1 + 2iηω)Γ(iω) ≥ P ητΓ(iω)2

(C6)
is satisfied for ω  R1, there exists P, L and P > 0 so that
the following equalities hold

PA + ATP = − LLT − P ητDDT − PP

PB =τ (kI + ηAT )D – wL
(C7)

with k = 1/2. Defining Γ(iω) = X(iω) + iY (iω), eqn(C7)
reduces to circle criterium[23]

2(ητ)1+ Xη1 − 2ωY ≥ P (X2 + Y 2)
(C8)

For each ω  R1 the point (X(iω), Y (iω)) should be
inside the circle centered at [1/(2P η), −ω/P] and
passing through the (fixed) points (X+, 0), (X−, 0) with

X± = (2P η)1± P 1/2 2(ητ)1 + (4η 2P)  1/2

(C9)
and with X− < 0, X+ > 0. For ω small Γ  − < D,Â−1B >
−iω < D,Â−2B > so Y < 0 and for ω → ∞

Γ  i <D ,B > /ω− < D,ÂB/ω2

(C10)
ie X and Y are decaying to 0. As the circle radius

Rc (ω) = (1/√P)(ω2/P)+(2/ητ)+(1/4η2_P ) 1/2

(C11)
increases with ω, it is sufficient for eqn(C9) to be
satisfied that both limiting conditions for ω  0 and ω →
∞, ie X(0) = − < D,Â−1B > ≤ X+ and ητ ≤ 1 be satisfied,
which is always possible with convenient choice of
parameters.

Using P, L and P > 0 in eqn(C6) and defining w so
that w2 = 2(k + ητ< D,B >), one gets after some
manipulations

dV/dt ≤ −P  < xs, Pxs > +  0<D,xs>Ψ(ξ)dξ −

< [Lxs − wΨ], [Lxs − wΨ] > + 2 xs 2(P2 + ητ2D22)

Gs2

(C12)
Using eqn(16) and defining (t) = 2(P2 + ητ2D22)

Ms(t), one finally gets the bounding inequality
dW/dt ≤ −PW + (t) /λmax(P) .W1/2gs(W1/2)

(C13)
with W=V/λmax(P), very clearly showing
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the balance between the stabilizing linear (gain) term and
the bound of the nonlinear one. If gs(.) is upper bounded
on the whole interval, the term on the right hand side of
eqn(C13) is negative above some threshold value. On the
other hand, because gs(.) is a higher order term at the
origin by construction, the right hand side of eqn(C13) is
negative close to the origin. So there may exist on the
real line an interval where gs(.) > 0, and which separates
two domains of stability. If gs(.) is growing at infinity,
there exists a threshold value above which the system is
unstable. So there is an asymptotic stable ball around the
origin. The decay to 0 is fixed by the specific behavior of
gs(.) and is not necessarily exponential as for the case of
linear gs(.). As a simple example, when gs(x) = xλs a
power law, one gets

W(t) ≤ W0 exp−P t 1 – W0(λs−1)/2 (P λmax(P))−1E(t) 2/(λs−1)

(C14)
with

E(t) = 0t (t’) 1 − exp−1/2(λs − 1)t’dt’
(C15)

Asymptotic stability is obtained within the ball W0 <
(Pλmax(P)/ Ê)2/(λs−1), where Ê is a normalizing value of
E(t). It corresponds to the largest domain for which
linear and nonlinear terms become comparable. The
singular case λs = 1 corresponding to previous linear
power law bound for nonlinear terms leads to strict
exponential bound on solution decay in the entire domain
V0 > 0. For more general power law bound, absolute
asymptotic stability result only extends into a conditional
one with a size depending on the competition between
the gain in linear control law and the amplitude factor
Ms(t), ie the perturbation d(t). Though similar to previous
results, in present situation however, robustness is
obtained in larger domain. It also shows the advantage
of better taylored control law which, as concerns the
nonlinear part Δu, can be further improved by
adjusting base co-vector D representing the weight given
each component of state vector x in more general
adaptive setting of neuro-fuzzy nonlinear
representation[47].

Using present extension of Popov criterion, the
explicit form of driving function f(  ) =  1/2 is finally
found in eqn(B6) leading to the same bound as in
eqn(B11) with  = ½, whereas the additional controller

takes the simple form u =  (D.e) instead of eqn(B6).
Analysis of U = U(kt,Y0,) in eqn(B11) shows that when
(/k)Y0 1 < 1, y(t) has no singularity over the complete
real line, and two cases can occur. If   /k > 1, Y0 is
always < 1 and larger limit value of Y0 corresponds to
larger exponent . So extension of Popov criterion gives
a smaller robustness ball than fixed point result. If /k <
1, Y0 can be > 1 in which case conversely, larger limit
value of Y0 corresponds to smaller exponent  . So
extension of Popov criterion is equivalent to fixed point
result when taking the smallest allowable exponent value
1/2. When (/k)Y0 1 > 1, there exists a critical time ktc
for which y(t) is singular, showing finite time Lagrange
instability. Only finite time boundedness is possible in
this case, and given a ball B it is interesting to determine
the largest initial ball B(0,Y0) so that its transform
B(T,Y(T)) by eqn(A10) satisfies B(T,Y(T))  B with
largest T corresponding to smallest input-output
amplification factor. In the same way, smallest exponent
corresponds to largest T and largest Y0 when  /k < 1,
whereas a compromise has to be found when  /k > 1.
So in all cases an adapted controller exists in explicit
form from application of Fixed Point Theorem, and is
very robust as it only depends on global bounding
functions for system equations. These functions may
change with the task, so here the system has a
consistency link between the task assignment and the
nature of its response through the controller guiding
system trajectory whatever it starts from toward any
trajectory belonging to the task manifold.
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