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ABSTRACT
Accurate prediction of building load is essential for energy saving and environmental protection. Exploring the

impact of building characteristics on heating and cooling load can improve energy efficiency from the design stage of
the building. In this paper, a prediction model of building heating and cooling loads is proposed, which based on
Improved Particle Swarm Optimization (IPSO) algorithm and Convolution Long Short-Term Memory (CLSTM) neural
network model. Firstly, the characteristic variables are extracted and evaluated by Spearman’s correlation coefficient
method; Then the prediction model based on the CLSTM neural network is constructed to predict building heating and
cooling load. The IPSO algorithm is adopted to solve the problem that manual work cannot precisely adjust parameters.
In this method, the optimization ability of the PSO algorithm is improved by changing the updating rule of inertia
weight and learning factors. Finally, the parameters of the neural network are taken as IPSO optimization object to
improve the prediction accuracy. In the experimental stage of this paper, a variety of algorithm models are compared,
and the results show that IPSO-CLSTM can get the best results in the prediction of heating and cooling load.
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With the rapid development of economic society, people are paying
increasing attention to energy waste and environmental protection. The
“China Building Energy Consumption Report” released in 2019 pointed out
that building energy consumption accounts for 21.11% of the national energy
consumption. Several studies have shown that the consumption of Heating
Ventilation and Air Conditioning (HAVC) in the total energy consumption
of buildings takes the largest proportion[1,2].

The prediction of Heating Load (HL) and Cooling Load (CL) plays an
important role in the planning and management of the energy system.
Recently, many researchers have focused on predicting model methods. Li et
al. estimated the hourly cooling load of the building by using the Support
Vector Machine (SVM) and three common neural networks which are BP,
Radial Basis Function (RBF), and General Regression (GR). The results
showed that SVM and GR performed better[3]. Catalina et al. used the
multiple regression method to estimate the heat demand of buildings. They
used the south equivalent surface, the building global heat loss coefficient,
and the difference between outdoor and indoor temperatures as input variables
to predict the heat demand. The experiment proved that this method had good
accuracy[4]. Al-Shammari et al. developed a firefly algorithm with grid search
to optimize the SVM to predict district heating load, which proved superior to
genetic programming (GP), Artificial Neural Network (ANN), and SVM algo-
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rithms[5]. Chou et al. combined the Support Vector
Regression (SVR) with the ANN model to predict the HL
and CL of 17 buildings. Compared with other methods,
ANN-SVR showed better accuracy[6]. Tsanas et al. and
Wang et al. used Random Forest (RF) to
estimate building energy consumption and proved that its
performance was superior to Partial Least-Square
(PLS)[7], Regression Tree (RT), and SVR[8]. Besides,
Wang et al. used time factors and weather factors to
predict the building cooling load, and the results showed
that LSTM neural network had better performance in
short-term prediction, while eXtreme Gradient Boosting
(XGBoost) had better performance in long-term
prediction[9]. Taking the heating and cooling load of a
5-story office building in Tianjin as the study object and
outdoor meteorological factors as input, Zhao et al.
established a wavelet-PLS-SVM prediction model,
which is proved to apply to this kind of problem[10]. Guo
et al. used correlation analysis and the LSSSO method to
optimize the feature set. Then they compared the four
methods, Media Loss Rate (MLR), BP neural network,
SVR, and Extreme Learning Machine (ELM), to
respectively predict the energy demand of
office buildings. The results proved that ELM has better
performance[11]. Yun et al. utilized an AutoRegressive
exogenous (ARX) model with indexes to predict the
hourly heating load of buildings[12]. Wan et al. used the
quadratic regression method to research the impact of
climate change on the HL and CL of office buildings[13].
Some researchers combined meta-heuristic algorithms
with neural networks to improve the quality of
predictions. Le Thi Le et al. combined ANN and
meta-heuristic algorithms to predict the heating load
of buildings, and the results proved that the
meta-heuristic algorithms could optimize ANN
parameters to a large extent[14]. Bui et al. took
advantage of the Genetic Algorithm (GA) and Imperialist
Competitive Algorithm (ICA) to optimize the ANN
parameters, and the results proved that ICA-ANN had
a better prediction effect[15]. Zhou et al. used PSO and
Artificial Bee Colony Algorithm (ABC) to optimize
Multilayer Perceptron (MLP), and the results showed
that the optimization performance of PSO was better[16].
Huang et al. used the improved Ant Colony Optimization
(ACO) to optimize the Wavelet Neural Network (WNN).

Compared with the WNN model, the model proposed in
this paper has a better effect[17]. Roy S S et al. discussed
the application of different machine learning
technologies in the prediction of residential building
heating load and cooling load. They used MARS to
evaluate the importance of each parameter in the
prediction, and these important parameters were fed to
ELM to establish a hybrid model, achieving a relatively
good prediction effect[18].

The cooling and heating capacity of air conditioners
is predicted based on different parameters, such
as building characteristics, climatic factors, and working
conditions. Exploring the influence of different
influencing factors on cooling and heating load can
realize energy saving at different levels. Due to the
numerous factors affecting building load, it is difficult to
determine its accurate mathematical model, so the
current research mainly uses machine learning or neural
network methods to model the model.

Weather factors and working parameters are the
main factors to be considered in the prediction
of building HL and CL. The time series model is used to
predict the load demand in the next cycle, to adjust the
current equipment working state, and achieve the effect
of energy-saving. There are few studies on the influence
of building data on energy consumption. In this
paper, building data without timestamps are used to
regressively predict the HL and CL of buildings.
Estimating energy efficiency can guide the design and
improvement phase of a building, greatly reducing
energy waste.

In this paper, the data set given in the article[15] is
used to carry out experiments to predict the HL and CL
of the building. Based on this data, some researchers
have combined heuristic algorithms with the neural
network[7,13,16], but the prediction accuracy still needs
to be improved. Therefore, the PSO algorithm and
CLSTM neural network model are combined to improve
the prediction accuracy of building HL and CL in this
paper.

LSTM neural network has shown great performance
in dealing with time series problems, but it is rarely used
in dealing with regression problems. LSTM memory
units can remember long and short-term information. In
this paper, we take advantage of this feature to solve the
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problem of building load regression prediction. At the
same time, the convolution layer is used to extract the
feature information, and the neural network prediction
model of CLSTM is established. Some parameters of the
neural network need to be set artificially. With different
parameters set, the prediction performance of the trained
model is also different. Therefore, it is particularly
important to select appropriate model parameters. At
present, the selection of network model hyperparameters
often depends on the experience of researchers and the
results of multiple experiments, which consumes a lot of
manpower and computing resources. In this paper, we
use the IPSO algorithm to optimize the parameters of the
CLSTM neural network, establish the IPSO-CLSTM
model.

2. IPSO-LSTM Neural Network
Prediction Model
2.1 Overall structure of IPSO-LSTM

The overall structure of the model in this paper is
shown in Figure 1, which mainly contains three parts:
the Convolution layer, the IPSO optimization module,
and LSTM neural network prediction model. The
Convolution layer module mainly extracts the feature
information from the data and then inputs it into the
LSTM model. The LSTM neural network model mainly
predicts the heating load and the cooling load, the input
is 1 2, , nx x x , and the output is the HL and CL. The
main goal of building this model is to achieve accurate
prediction of heating load and cooling load. The IPSO
algorithm mainly optimizes the parameters of the neural
network model, and the output is the number of hidden
layer neurons, the number of iterations, and the batch
size.

Figure 1. IPSO-CLSTM model structure.

2.2 Convolution layer
The convolution layer is composed of several

convolution units, and the parameters of each
convolution unit are optimized by the backpropagation
algorithm. Each unit is a filter with a width of  and
a height of m , and the same number of m and
features. Then the output of the i filter is:

 i i ih tanh W X b  

(1)
Where the output ih is the vector,  is the convolution
operation. iW and ib are the weight matrix and bias,
respectively. tanh is the activation function, and it's
defined as the following formula:



Liu Xudong, Li Shuo, Fan Qingwu.

14

 
x x

x x

e etanh x
e e










(2)

2.3 LSTM neural network model
LSTM is a special kind of Recurrent Neural

Network (RNN). By elaborately designing the gate
structure, it avoids the problem of gradient disappearance
and explosion caused by traditional RNN, and can
effectively learn the long-term dependence relationship.
LSTM adds a structure called a memory unit to the
neurons in the hidden layer of RNN to remember past
information. It has an input gate, forgetting gate, and
output gate, which can control the use of historical
information.

The neuronal structure of the neural network for
LSTM is shown in Figure 2. The neuronal structure of
the LSTM is composed of three gate structures, which
play a role in turn when neurons process information.
First, the forgetting gate determines the useless
information to be abandoned in the neuron structure, then
the input gate determines the useful information to be
retained in the neuron structure, and finally, the output
gate determines the output result.

Figure 2. The neural network structure of LSTM.

In the neural network structure of LSTM the
forgetting gate, input gate, and output gate can be
expressed as the following formula:

  1t i t - t ii = W h ,x +b 
(3)

  1= ,t f t t ff W h x b  
(4)

  1= ,t o t t oo W h x b  
(5)

Then, according to the input tx at the current

moment and the state value 1th  at the previous moment,
the candidate state value of the current neuron is
calculated:

   1t c t - t cC = tanh W h ,x +b
(6)

The proportion of the state value 1tC  at the
previous moment and the candidate state value at the
current moment in the new state value 

tC is
determined by forgetting the gate tf and input gate ti .

1= tt t t tC f C i c   

(7)
Finally, calculate the output value ty at the current

moment:
 t t t ty = h o tanh C 

(8)
In this paper, the model in the experiment is built

under the Python Keras framework. The loss function
uses MSE, and the training process is optimized by the
Adam algorithm.

2.4 PSO algorithm and improvement

PSO algorithm is a swarm intelligence optimization
algorithm that simulates the social behavior of animals
such as birds and fish. The particle has only two
properties: velocity and position. Each particle represents
a possible solution to the problem, and its characteristic
information is described by the position, velocity, and
fitness value. The fitness value is calculated by the fitness
function.

The PSO is initialized as a group of random particles
and then finds the optimal solution through continuous
updating and iteration. In each iteration, the particle
updates itself by tracking two “extreme values”( pbest ,
gbest ). After finding these two optimal values, the
particle updates its velocity and position using the
following formula.

 
 

1

2

( 1) ( ) () ( )

() ( )
i i i i

i i

v t = v t +c rand pbest x t

c rand gbest x t

    

   

(9)

( 1) ( ) ( 1)i i ix t x t v t   

(10)

Where iv is the velocity of the particle; ()rand is a
random number between (0,1); 1c and 2c are the
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learning factors;  is the inertia weight. In this paper,
the updating rules of inertial weight and learning factors
are changed to improve particle swarm optimization.

2.4.1 Improvement of inertial weight

The inertia weight has a great influence on the
convergence of the PSO algorithm. When the value is
large, the global capability is strong, and the local
optimization capability is weak. When the value is small,
the global optimization ability is weak, and the local
optimization ability is strong. In this paper,  is
updated using a linear decrement strategy, which enables
 to change as the number of iteration. Typical linear
decline strategies are as follows:

max min
max

max

t
t

 
 


  

(11)

Where max and min are the maximum and
minimum values of  respectively; t and maxt are
the current iteration number and maximum iteration
number respectively.

This method enables PSO to follow the iteration
number to control the global search ability and local
search ability, which improves the algorithm performance.
However, if the global optimum value cannot be searched
at the beginning of the iteration, the local searching
ability will be enhanced with the decrease of the value,
and the local extremum will be easily trapped.

Because of the large range of neural network
parameters, a typical linear decreasing strategy is easy to
fall into the local extremum. To overcome this limitation,
a linear differential diminishing strategy is adopted in this
paper. The calculation formula is as follows:

 max min
2
max

2d t
dt t

  
  

(12)

2max min
max 2

max

t
t

 
 


  

(13)

In the early stage of the algorithm, the decreasing trend of
 is slow, and the global search ability is very strong,

which is conducive to finding a suitable solution in a
large range. In the later stage of the algorithm, the
decreasing trend of  is accelerated. Once a suitable
solution is found in the early stage, the convergence speed
of the algorithm can be accelerated.

2.4.2 Improvement of learning factors

It can be seen from formula (1) that 1c reflects the
trend degree of particles approaching their personal
historical best position and 2c reflects the trend degree
of particles approaching their global historical best
position. Usually, 1 2 2c c  , but we hope that the
global search capability is strong in the early stage of
iteration and the local search capability is strong in the
later stage. Therefore, 1c should decrease with the
progress of the algorithm and 2c should increase with
the progress of the algorithm. The specific expression is
as follows:

   max min
1 max

max

t c c
c t c

t


 

(14)

   max min
2 min

max

t c c
c t c

t


 

(15)

In the above formulas, maxc and minc are the maximum
and minimum values of c respectively; t and maxt are
the current iteration times and the maximum iteration
times respectively.

The improvement in the above two directions can
make the algorithm search the solution space in a wide
range in the initial phase of iteration and gather together
the optimal solution quickly in the later phase to improve
the performance of all aspects of the algorithm.

2.5 IPSO-CLSTM model

To accurately predict the building load, the
Convolution and LSTM neural network are combined in
this paper to construct the prediction model CLSTM for
the building heating load and cooling load. The value of
some hyperparameters in the neural networks controls the
model network structure. To make the model network
structure match the data characteristics, we combine the
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IPSO algorithm with the neural network model to build
the IPSO-CLSTM prediction model.

The model first takes the number of hidden layer
neurons, iteration times, and batch size as the
optimization objects of the IPSO algorithm, besides to
randomly initializes the particle position information
according to the value range of each parameter. Then the
CLSTM neural network model is established by using the
parameters corresponding to the particle position, and the
model is trained and predicted by using the data. The
mean square error of the model is taken as the particle
fitness value. The fitness function is defined as:

 
2

1

1 n

i i
i

MSE y y
n 

 

(16)

In the formula: n is the number of test data; iy is
the true value of test data i ;  iy is the predicted value
of test data i .

According to the fitness value of each particle, the
individual extremum and the global extremum are
obtained. Equations (9) and (10) are used to update the
particle velocity and position respectively to achieve the
optimization goal of minimum MSE. Finally, the neural
network model is constructed with the optimal particle
position information to complete the establishment of
IPSO-CLSTM.

The flow of the model algorithm is as follows:
Step 1: Divide experimental data into training data

and test data, and conduct standardized processing;
Step 2: The number of hidden layer neurons,

iteration times, and batch size in the CLSTM neural
network model are taken as optimization objects, and the
IPSO algorithm is initialized;

Step 3: Determine Equation (16) as the fitness
function. The CLSTM neural network model is
constructed by initializing the parameters corresponding

to particle information, and the fitness value is obtained
through training and prediction;

Step 4: Calculate the fitness value of each particle
and compare it. Then record individual extremum and
global extremum;

Step 5: According to Equation (13)-(15), the inertia
weight is updated. Then, Equations (9) and (10) are
applied to constantly update the velocity and position of
particles;

Step 6: After meeting the maximum number of
iterations of the IPSO algorithm, the CLSTM neural
network model is constructed by taking the optimal value
of the hyperparameters for training and prediction.

3. Experiments and Discussion
3.1 Experimental Data

The experiment applied the data set selected from
the UCI machine learning storage library. The data set is
also established in the paper[7]. The data was
generated by simulating 12 different building shapes for
energy analysis in Ecotect software. There are 8 input
variables in the data set, Relative Compactness (RC),
Surface Area (SA), Wall Area (WA), Roof Area (RA),
Overall Height (OH), Orientation (OR), Glazing Area
(GA), and Glazing Area Distribution (GAD). The
response variables are HL and CL in the data set.
Although there is no guarantee that the simulated data
will perfectly reflect the actual data in the actual project,
the simulated data results can provide a good indication
of the possible percentage changes and potential trends
in the actual data, thus enabling the building energy
comparison.

Since LSTM can learn sequence features, we
randomly scrambled experimental data to eliminate the
influence of sequence. Heating and cooling loads after
disruption are shown in Figure 3.



Prediction of building energy consumption based on IPSO-CLSTM neural network

17

(a) Heating Load

(b) Cooling Load

Figure 3. Disorganized data presentation.

Because it is the data simulated by the software, all
variables have no missing values or outliers. Therefore,
there is no need to do too much data preprocessing work.
In this paper, to eliminate the influence caused by
different dimensions, and improve the speed and
accuracy of the solution, we standardized the data.

i
i

x x
y

s




(17)

Where iy is the normalized value; ix is the original
value; x and s represent the mean and variance of the
original data, respectively. After standardization, the data
mean is 0, the variance is 1, and dimensionless.

The error evaluation indexes of the experiment
adopt Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE),

and R-square, namely:

 
2

1

1 n

i i
i

RMSE y y
n 

 

(18)


1

1 n

i i
i

MAE y y
n 

 

(19)



1

1 100%
n

i i

i i

y y
MAPE

n y


 

(20)
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1
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- 1
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i
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i

y y
R square

y y






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





(21)
Where iy is the true value;  iy is the predicted value.

In this paper, the dataset is split into training and
test data with a probability of 0.8 and 0.2 respectively.
Then the prediction results of IPSO-CLSTM,
IPSO-LSTM, MLR, SVR, and ELM models are
compared.

3.2 Selection of feature variables

Before the formal experiment, the data needs to be
reduced in dimensionality. Since the Principal
Components Analysis (PCA) algorithm cannot handle
nonlinear problems and will be accompanied by
information loss, traditional methods are used in this
paper to reduce the dimensionality of the data.

In this paper, the correlation coefficient and
significance degree between different variables and loads
are calculated to optimize the feature set of the prediction
model. This method can not only reduce the dimension of
data but also reduce the workload in the subsequent data
collection process. Since the data is non-normally
distributed, the Spearman rank correlation coefficient is
used to measure the correlation between each input
variable and the two output variables. The p-value is used
to assess whether the relationship is statistically
significant and to check for significance at the 0.01 level.
The results are shown in the following table:

Table 1. Correlation of various variables and load

Input
variable

HL(Y1) CL(Y2)

correlation
coefficient p-value correlation

coefficient p-value

RC(X1) 0.6221 <0.01 0.6510 <0.01

SA(X2) -0.6221 <0.01 -0.6510 <0.01

WA(X3) 0.4715 <0.01 0.4160 <0.01

RA(X4) -0.8040 <0.01 -0.8032 <0.01

OH(X5) 0.8613 <0.01 0.8649 <0.01

OR(X6) -0.0042 >0.05 0.0176 >0.05

GA(X7) 0.3229 <0.01 0.2889 <0.01

GAD(X8) 0.0683 >0.05 0.0465 >0.05

According to the results in the above table, the
values of orientation and glass area distribution and HL
and CL are both greater than 0.05, so they show an
insignificant relationship. The glass area is weakly
correlated for HL and CL because the correlation
coefficients between the glass area and two output
variables are both about 0.3. According to the
experimental results, 3 feature sets are constructed by
using the complete set, removing OR and GAD,
removing OR, GAD and GA, as shown in the
table below:

Table 2. Feature sets information

Feature sets for the load prediction models

Name Variables Number Output

FS1 RC, SA, WA, RA, OH, OR,
GA, GAD 8 HL,

CL

FS2 RC, SA, WA, RA, OH, GA 6 HL,
CL

FS3 RC, SA, WA, RA, OH 5 HL,
CL

Then, MLR, SVR, and ELM are used in this paper,
and RMSE and MAPE are used to evaluate the influence
of each feature set on the prediction accuracy of the
model. The results are shown in the table below:
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Table 3.Model performance comparison under different feature sets

Model
FS1 FS2 FS3

RMSE MAPE RMSE MAPE RMSE MAPE

MLR
HL 3.146 10.85% 2.889 10.61% 4.376 16.44%
CL 3.538 13.33% 3.121 9.05% 3.899 11.95%

SVR
HL 2.163 7.22% 1.724 6.12% 3.876 14.79%
CL 2.433 6.73% 2.292 6.12% 3.376 10.45%

ELM
HL 0.989 3.31% 0.503 1.58% 3.538 13.33%
CL 3.097 7.00% 1.749 3.69% 3.124 9.38%

By horizontal comparison of the performance of
different models under different feature sets, it is not
difficult to find that compared with FS1, FS2 has better
performance after removing OR and GAD. Therefore,
insignificant variables have no positive influence on the
model. The performance of FS3 is worse after removing
OR, GAD, and GA variables. By comparing FS2 and
FS3, it can be seen that the correlation is weak, but it still
played a role in model training and prediction.

3.2 Selection of feature variables

According to the experimental results in the
previous section, the subsequent experiments mainly
focus on the feature set FS2 in this paper. Because there
is a big difference between HL and CL, we separate the
two for research in this paper. There are altogether 768
data in the data set, among which 613 data are taken as

the training set and 155 data are taken as the test data.
The number of particle swarm is set as 30, the maximum
number of iterations is 50. The learning factor is 2.5 at
the maximum and 0.5 at the minimum. The inertia
weight is 0.9 at the maximum and 0.4 at the minimum.

For heating load prediction, the number of hidden
layer neurons, the number of iterations, the batch size set
value range respectively [32, 128], [50, 100], and [20,
100], the final optimization parameters are [64, 512, 80].
The experimental results are shown in Figure 2, the
IPSO-CLSTM model, and other models contrast results
as shown in Table 4. For cooling load predicting, the
parameter value range respectively [64, 256], [150, 800]
and [80, 600], and the final optimization parameters are
[128, 512, 512]. The experimental results are shown in
Figure 3, the IPSO-CLSTM model compared with other
models of the results as shown in Table 5.

Figure 4. IPSO-CLSTM heating load prediction results.
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Table 4. Comparison of evaluation indexes of various models for heating load forecast

Model RMSE MAE MAPE R-square
MLR 3.184 2.253 10.87% 0.896
SVR 1.724 1.207 6.12% 0.970
ELM 1.068 0.659 3.47% 0.988
LSTM 0.595 0.453 2.43% 0.996

IPSO-LSTM 0.518 0.375 1.89% 0.997
IPSO-CLSTM 0.506 0.343 1.60% 0.997

Figure 5. IPSO-LSTM cooling load prediction results.

Table 5. Comparison of evaluation indexes of various models for cooling load forecast

Model RMSE MAE MAPE R-square
MLR 3.121 2.277 9.05% 0.888
SVR 2.292 1.546 6.12% 0.940
ELM 1.792 1.211 4.21% 0.963
LSTM 1.789 1.170 4.08% 0.963

IPSO-LSTM 1.757 1.166 3.98% 0.965
IPSO-CLSTM 1.629 1.020 3.46% 0.970

From the above figures and tables, it can be seen
that for building heating load and cooling load prediction,
the prediction performance of the IPSO-CLSTM model
proposed in this paper is better than other models, and
the R-square index is closer to 1 than other models. For
HL prediction, compared with ELM, IPSO-CLSTM
reduced RMSE by 14.9%, MAE by 24.3%, and
MAPE by 34.2%, and model accuracy is significantly
improved. For CL prediction, compared with ELM,
IPSO-CLSTM reduced RMSE by 8.9%, MAE by 14.0%,
MAPE by 15.2%, and model accuracy is improved. Each
index of the IPSO-CLSTM model is better than that of

the LSTM neural network model, but the
difference between them is not obvious, mainly because
these two prediction models have the same unit structure.
The most prominent advantage of the IPSO-CLSTM
model is that manual parameter adjustment is not
required during the construction process, and the
prediction results are better than the common LSTM
neural network model.

The experimental results of this paper are compared
with the experimental results of the best method in the
paper [14][15][16]. The results are shown in the
table below:
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Table 6. Performance comparison of methods between papers

Paper Method
HL CL

RMSE MAE R2 RMSE MAE R2

[13] GA-ANN 1.625 0.798 0.98 - - -
[14] ICA-ANN 2.782 2.009 0.912 2.799 2.105 0.929
[15] PSO-MLP 2.569 1.863 0.937 3.122 2.136 0.900

This paper IPSO-CLSTM 0.506 0.343 0.997 1.629 1.020 0.970
It can be seen from the table that the IPSO-CLSTM

algorithm proposed in this paper is obviously superior to
the methods in the other three papers, showing better
advantages in the prediction of building HL and CL.

4. Conclusion
Aiming at the problem of HL and CL regression

prediction based on building data, the IPSO-CLSTM
model is proposed in this paper. The model improves the
optimization ability of the PSO algorithm by improving
the updating rule of inertia weight. This method mainly
optimizes the CLSTM network structure through the
IPSO algorithm to reduce the influence of human factors.
In this paper, data sets from the UCI machine learning
repository are selected for experiments, and the results
show that IPSO-CLSTM has higher prediction accuracy
than other algorithms. Compared with the ELM model,
the RMSE of IPSO-CLSTM decreased by 14.9% for
heating load and 8.9% for the cooling load.

It can be seen from the experimental results that the
prediction accuracy of various models for the cooling
load is not good. The following work is mainly carried
out from two aspects: one is to replace a more suitable
model to predict cooling load; the other is to look
for building factor variables more closely related to the
cooling load.

In this paper, it mainly makes the following
innovations and contributions:

(1) Use only building data to explore its influence
on cooling and heating loads.

(2) The LSTM is applied to the multiple regression
prediction of non-temporal relationship to explore its
fitting effect on the expected value of multidimensional
data.

(3) By improving the inertial weight and learning
factor of PSO, the global optimization and local fast
convergence of the algorithm are enhanced.

(4) Compared with other methods, the proposed
IPSO-CLSTM method has a great improvement in
accuracy; Compared with LSTM, the proposed method
reduces the intervention of human factors. Although it is
higher in time complexity and computational cost than
LSTM, this cost is acceptable for the improvement of
accuracy.
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