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Abstract: The purpose of this research is to describe the statistical behavior and determine the probability distributions that
best fit each component of conventional concrete mixtures, which are water, cement, fine aggregate and coarse aggregate,
designed by the Porrero and ACI methods for compressive strengths between 250 and 280 kg/cm? and nominal maximum
size of 1.0 inch, settlements up to 6.0 inches, Portland cement type I or type CPCA1 and natural sand. For this purpose, it
was necessary to create a database by consulting the theses prepared in the Civil Engineering Department of the Lisandro
Alvarado Central Western University, and 228 theses were reviewed, of which 66 complied with the defined scope. The
descriptive statistical analysis reported low and intermediate dispersion, and it was concluded that the arithmetic mean
obtained represents the data set by variable and the distributions obtained for water, cement, fine aggregate and coarse
aggregate were Gen. Gamma (4P), Gen. Extreme Value, Weibull (3P) and Frechet respectively for the ACI method and for
Porrero Hypersecant, Log-Pearson 3, Johnson SB and Chi-Square (2P) as appropriate.
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1. Introduction

Concrete is a material that has been used with great frequency worldwide for the construction projects. Concrete
quality is a factor of great importance that depends on many variables, and requires the implementation of multiple
controls and tests in order to guarantee it. The quality of concrete is determined by the aggregate materials and the
proportions of these components, such as cement, water, fine aggregate and coarse aggregate, which directly influence the
properties of the material and have effects not only on the appearance of the final product, but also on the workability and
consistency at the plastic state, as well as on the durability, strength, elastic and thermal properties, volumetric changes and
unit weight of the concrete after hardening. These concrete components constitute elements that can be modified in their
quantities, representing a variable that can be considered random and describing a probabilistic behavior.

Although the dosages of the concrete components are obtained from a deterministic model such as the ACI method [1]
and Porrero Structural Concrete Manual [2], according to the standard mixture database, behavior suitable for probability
distribution can be captured for each component of the mixture. The importance of these probability distributions is that
they serve as a basis for the development of models that simulate the concrete strength without the implementation of
physical tests, and in turn open the way to new research in the field of statistics that can study other variables of this

material. The present investigation was based on the data collection reflected in the degree theses elaborated in the Civil
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Engineering Department of the Lisandro Alvarado Central Western University, Barquisimeto, Lara State, concerning the
proportions of each concrete component used in the tests.

2. Development

2.1 Background

Regarding the probability distributions associated with the components of conventional concrete mix designs, some
works are presented below, which are relevant to the research purpose to be developed:

Garcia [3], analyzed the behavior of new statistical distributions never used in hydrology, for which he carried out a
study with data of maximum annual rainfall from 53 meteorological stations in the province of Badajoz, comparing the fit
goodness of the Kolmogorov-Smirnov and Anderson-Darling tests, and the flows reflected by the classical statistical
distributions with other distributions more recently applied in other fields of science. He concluded that the new probability
distributions, Dagum, Burr, Log-Logistic (3P), Pearson 5 (3P) and Frechet (3P) fit better statistically according to
goodness-of-fittest than Gumbel, Log-Pearson (3P) and SQRT-ET max.

For his part, Cerén [4], proposed a solution that would save the country a considerable amount of money in the
investment of maintenance and rehabilitation of infrastructure works. For this purpose, he conducted probability analysis
on high-strength concrete to determine the distribution of controlled simple concrete, and developed a probability method
from the study of HPC compressive strength test results. He concluded that such methodology provides results with more
complete and realistic information about the strength level of the mix.

In another study, an analysis of the influence of some components in the production of high-strength concrete was
carried out by using a database that made it possible to evaluate the different dosages for various w/c ratios and
compressive strength [4]. The database used consisted of 487 concrete dosages from the collection of scientific journal
articles from university, technical and scientific study centers, conference publications, doctoral and master's theses.

These studies essentially demonstrate the feasibility of conducting analyses related to the objectives proposed in this
work, such as describing statistical behavior and determining the probability distribution most suitable for each component
of traditional concrete mixtures.

2.2 Theoretical references

2.2.1 Concrete and its components

Venezuelan Standard COVENIN 221:2001 [5] defines concrete as "a mixture made up of binders, inert aggregates and
water in adequate proportions to obtain pre-set strengths".Depending on the quantities and characteristics of the materials
used, the properties and quality of the concrete will vary; for example, the water/cement ratio is directly related to strength
and, together with the cement dosage, to workability. Thanks to its versatility, it is possible to obtain different plasticities,
strengths and appearances by using different components or by varying their possible proportions, in order to meet the
requirements of each project [2].

In this research work, the variables to be studied were the components of conventional concrete, which are water,
cement, fine aggregate and coarse aggregate, according to the ACI and Porrero methods. In the case of cement, mixes
made with Portland type I cement and cement with CPCA1 type additions were considered.

2.2.2 Mix design

According to Porrero [2], mix design is the process of determining the proportions of concrete constituents that are
most suitable for obtaining the required quality, i.e. the desired behaviour in the plastic and hardened states. There are
numerous methods for designing concrete mixtures, which vary according to the complexity of the variables they deal with

and the relationships they establish; the most widely used in Venezuela are those of Porrero and ACI.
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The method proposed by Porrero has been tested in laboratories and concrete plants and designed for the use of poorly
controlled aggregates and for the calculation, preparation and control by professionals with little experience. It takes into
account factors such as the site or environmental conditions, the type of work or part of the structure and its dimensions,
the type of aggregate and the type of cement. A characteristic quality of this method is that it uses a ratio between fine and
coarse aggregate, i.e., it handles the grain size of the combined aggregate [6].

The variables considered in this method include water/cement ratio, cement dosage, workability, and strength, which
can improve concrete when combined with aggregates limited by particle size. Additionally, correction factors related to
the maximum size and type of aggregate are taken into account for the calculation of the water/cement ratio and cement
dosage. It is valid for concrete with slumps between 1 and 6, and compressive strengths between 180 and 430 kg/cm?.

The method established by the American Concrete Institute (ACI) calculates the absolute volume of concrete
components based on a logical sequence applicable to the available material properties. It determines the required strength
and sets the water/cement ratio to ensure the durability and strength of the concrete. It is used for normal weight concrete
and requires knowledge of strength, maximum aggregate size, maximum water cement ratio, cement content, admixtures,
and air content [1].

3. Methodology

For the purpose of conducting research, the research subjects include all concrete mix designs for strengths between
250 - 280 kg/cm? up to 6" of slump, 1" crushed stone, natural river sand and Portland cement and CPCA1 type, according
to the Porrero and ACI methods. The sample was made up by simple random probability sampling corresponding to

infinite population and unknown variance. Thus, the sample size is as follows:

Z,*pq
n=|———r (1)
e

Considering a confidence level of 0.95 and for an area under the curve of 0.025, it is obtained that Z a/2 = + 1.96.
Under a binomial distribution, the probabilities of success p and failure g, are p = q = 0.5. The estimation error of 0.05 was
taken as the researcher's criterion, since it generally fluctuates between 0.04 and 0.06, according to the sampling theory.

Substituting the values in the previous expression we obtain:

1,96 * 0,5 * 0,5\ °
-n=( ) — 96 2)
0,05

However, due to the limited availability of Special Degree Works (SDW) carried out at the Civil Engineering
Department of the Lisandro Alvarado Central Western University, whose data complied with the characteristics defined
above, the sample sizes for the Porrero method were 76 data points and for the ACI method, 30 data points for each
component of each mix design. Although the data per component for the ACI method are few, they represent the population,
since according to the sampling theory, a sample is representative when the number of observed elements of the population
is greater than or equal to 30. In this research work, the variables under study are the quantities of water, cement, fine

aggregate and coarse aggregate for each method of conventional concrete mix design.




3.1 Collection and processing of information

Data on the design of concrete mix proportions with strengths ranging from 250 to 280 kg/cm? in SDW were collected,
and the component dosages of different concrete mix proportions in selected projects were compiled. Subsequently, the
sample under study was formed and a descriptive statistical analysis was performed to estimate the measures of central
tendency, dispersion and graphs for each component of concrete mix designs for strengths between 250 - 280 kg/cm?. By
recording the data collected in a Microsoft Excel spreadsheet, the tables, frequency polygons, and histograms are drew, and
the mean, median, mode, variance, standard deviation, typical error, coefficient of variation, asymmetry, and kurtosis of
descriptive statistical data are calculated.

The probability distribution that best fits the behavior of each component of concrete mix designs was determined by
using software that adjusts the data to probability distributions EasyFit Version 5.6; introduce and analyze the data in
software to obtain adjusted distributions and select the probability distribution that best fits each of the components by mix
design method following the methodology applied by Garcia [3]:

® The data are entered into the program in order from smallest to largest.

® The adjustment of the different distributions is performed with the program.

® The program provided the most suitable distribution for input data through Kolmogorov-Smirnov, Anderson-
Darling, and Chi-Square fitting tests. For each distribution, it offers the density function and the cumulative distribution
function among other parameters.

® The result obtained is a table in which the fit order of the distributions is indicated, starting with one from best to
worst fit, based on the goodness-of-fit tests indicated.

® A table is prepared in Microsoft Excel with the results of the goodness-of-fit tests and the ranks obtained are
weighted to select the five distributions that best fit, taking into account the two tests simultaneously.

e Finally, for the first 5 distributions, their mean is calculated with the specified confidence interval, which is 0.95
in the present research work, and these values are compared with the mean of the 5 selected models, thus estimating their
deviation with respect to the group mean, which generates a new order of fit. The distribution with the smallest deviation
will be the one that best fits the input data.

4. Results

4.1 Descriptive statistical analysis

4.1.1 ACI method for conventional concrete mix design

The corresponding summary statistics are shown in Table 1. An average or arithmetic mean is a group characteristic
and not an individual characteristic, therefore, in this table, the group characteristics of variable data for water, cement, fine
aggregate and coarse aggregate in this method are: 196.9, 325.39, 916.13 and 902.51, representing the value around which
the highest concentration of data for each variable revolves. The position values or medians of each variable are 195, 325,
952.62 and 874.75 respectively, indicating that 50% of each data set is less than these values and the other 50% is greater,
dividing it into two equal parts. The most repeated value in each of the variables under study is 195, 325, 979.26 and
826.34 accordingly.

The standard deviation values for each variable are 7.96, 19.40, 100.81 and 75.64, respectively, which serve to
measure whether there is low, intermediate or high dispersion. The coefficients of variation for water, cement and coarse
aggregate are 0.04, 0.06 and 0.08 respectively, which indicates that these variables behave with a low dispersion, that is,
for each of them their arithmetic mean represents the group, while for the variable fine aggregate an intermediate

dispersion of 0.11 is observed with a tendency towards a low dispersion, for this reason we could consider that its mean




also represents the group of data. Consequently, the value ranges for each of the variables are the mean plus or minus its
standard deviation. These ranges are: for water 196.9 + 7.96 It, cement 325.39 + 19.40 kg, fine aggregate 916.13 + 100.81
kg and for coarse aggregate 902.51 + 75.64 kg.

Table 1. Summary of descriptive statistics for the ACI method. Source: authors.

ESTADISTICO VARIABLES
Agua (It) Cemento (Kg) Agregado Agregado
Fino (Kg) Grueso (Kg)
Media 196.,9 325,393 916,129333 902,511667
Mediana 195 325 952,62 874,75
Moda 195 325 979,26 826,34
Desviacion estindar ~ 7,96411261 19,3956592 100,810663 75,6389341
Varianza de la 63.4270897 376,191594 10162,7898 5721,24836
muestra
Coeficiente de 0,0404475 0,05960687 0,11003977 0,08380937
variacion
Curtosis 7,92109398 2,18278064 -1,0756143 -1,21717641
Coeficiente de 2,36935337 1,27348938 -0,37061969 0,5440219
asimetria
Rango 44,96 86 343,58 250,07
Minimo 180 300 75115 789,93
Maximo 224,96 386 1094,73 1040

The kurtosis of the water and cement variables are 7.92 and 2.18 respectively, because these values are greater than
zero, their curves are leptokurtic, indicating that the data is often concentrated around the central value. For the fine and
coarse aggregate variables, the kurtosis are -1.08 and -1.22, because they are less than zero, their curves are platykurtic,
indicating that their behavior is opposite to the other two, that is, their data is dispersed.

For variables such as water, cement, and coarse aggregate, the asymmetry is 2.37, 1.27, and 0.54, with values greater
than zero, indicating a positive asymmetry where values tend to cluster to the left of the arithmetic mean, i.e., the mode and
median are lower than the arithmetic mean, as shown in Table 1. For the fine aggregate variable, the asymmetry coefficient
is -0.37, and a value less than zero indicates a negative asymmetry where the values are clustered to the right of the mean,
meaning that the mode and median are greater than the arithmetic mean of the variable. Figures 1 and 2 show a unimodal
histogram because its bar graph is higher than the other bar graphs, where the absolute frequencies of one class are 188-

196 and 315-330, respectively.
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Figure 1. Absolute frequency histogram for the variable water by the ACI method. Source: authors.
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In addition, it is skewed, showing a greater concentration of data to the left of the mean, i.c., the variable water and
cement has an asymmetric behavior that agrees with the above mentioned for these variables. The class with the highest

frequency of occurrence contains the mean, median and mode values for both variables.
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Figure 2. Absolute frequency histogram for the cement variable for the ACI method. Source: authors.

Figure 3 indicates a unimodal histogram, since it has one bar higher than the others, that is, one of the classes has a

higher absolute frequency.
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Figure 3. Absolute frequency histogram for the fine aggregate variable for the ACI method. Source: authors.

It is considered biased, meaning that the fine aggregate variable exhibits asymmetric behavior, with one of the two
halves being larger than the other, and most of the data is concentrated on the right side, which is consistent with the
dispersion previously pointed out by this variable. The class with the highest absolute frequency is 924-982, which
includes the median and mode, but does not include the median. Figure 4 indicates a bimodal histogram, since it has two
equal higher bars, that is, two classes with equal absolute frequency. In addition, it is skewed, which shows that the
variable coarse aggregate has an asymmetric behaviour, with the data concentrated on the left side, which is consistent with
the dispersion previously carried out for the same. The classes with the highest frequency of data occurrence are 788-830

and 872-914, with the latter containing the mean and median values, while the mode is contained in the first class.
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Figure 4. Absolute frequency histogram for the coarse aggregate variable for the ACI method. Source: authors.

4.1.2 Structural concrete manual or Porrero's method
Table 2 shows the summary statistics corresponding to the data recorded for the variables water, cement, fine
aggregate, and coarse aggregate for the Porrero method, for a total of 76 data.

Table 2. Descriptive statistical summary of the Porrero method. Source: authors.

ESTADISTICO VARIABLES
Agua (lt) Cemento (Kg) Agregado Fino (Kg) Agregado Grueso (Kg)
Media 200,048132 389,5895 916.337276 845,062908
Mediana 202,345 384,11 894 841,525
Moda 210 340 1007.9 782.6
Desviacion estandar 19,2776083 46,7371563 116277188 93,067619
Varianza de la 371,626183 218436178 13520,3844 8661,58171
muestra
Coeficiente de 0,09636485 0,11996513 0,12689344 0,110131
variacion
Curtosis 1,44265081 -0,32753058 -0,01933324 -0,10731227
Coeficiente de 0,21661204 0,22650782 0,7194439 -0,15451937
asimetria
Rango 110,87 200 476,5 477,32
Minimo 14913 297 7448 562,64
Maximo 260 497 12213 1039.96

The arithmetic mean grouping characteristics of variable data for water, cement, fine aggregate, and coarse aggregate
in Table 2 are: 200.1, 389.6, 916.34 and 845.1, respectively, representing the highest degree of data concentration for each
variable. The position or median of each variable is 202.3, 384.1, 894 and 841.5, indicating that 50% of each set of data is
below these values and the other 50% is above these values, dividing it into two equal parts. The most repeated values in
each study variable were 210, 340, 1007.9, and 782.6, respectively.

The standard deviation of each variable is 19.28, 46.74, 116.28, and 93.07, respectively, which is used to measure
whether there is low, medium, or high dispersion. The variation coefficient of the water variable is 0.096, which is less than
0.10, indicating that the data dispersion of the variable is low, and its average value is representative of the group. For the
cement variable, the values of fine aggregate and coarse aggregate are 0.12, 0.13, and 0.11, respectively, with values
greater than 0.10 but less than 0.30, indicating an intermediate dispersion and a downward dispersion trend. Therefore, it

can be considered that the average value also represents the data set. Therefore, the range of values for each variable is its
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standard deviation or the average of its standard deviations. For water 200.1 &= 19.28 1t, for cement 389.59 + 46.74 kg, for
fine aggregate 916.34 + 116.28 kg, and for coarse aggregate 845.1 +£ 93.07 kg.

The kurtosis of the water variable is 1.44, and because this value is greater than zero, its curve is leptokurtic,
indicating that the data is often concentrated around the central value. For cement, fine aggregate, and coarse aggregate
variables, the kurtosis are -0.33, -0.02, and -0.11, and because they are less than zero, their curves are platykurtic,
indicating a low concentration of values, and meaning that their data is scattered. The platinum curve also shows a
softening of its distribution form.

For variables such as water, cement, and fine aggregate, the asymmetry is 0.22, 0.23, and 0.72, with values greater
than zero, indicating a positive asymmetry where values tend to cluster to the left of the arithmetic mean. For the coarse
aggregate variable, the asymmetry coefficient is -0.15, and values less than zero indicate negative asymmetry, with their
values clustered to the right of the mean.

Figures 5, 6 and 7 show a unimodal histogram, as they have a higher bar, indicating the highest absolute frequency
class, which are 397-422, 205-219 and 804-864 respectively. Furthermore, it is skewed, indicating that these variables have
an asymmetric behavior and in agreement with the aforementioned dispersion where the data are concentrated on the left

side of the distribution.
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Figure 5. Absolute frequency histogram of water variable for the Porrero method. Source: authors.
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Figure 6. Absolute frequency histogram of the cement variable for the Porrero method. Source: authors.
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Figure 7. Absolute frequency histogram of fine aggregate variables for the Porrero method. Source: authors.

Figure 8 shows a bimodal histogram because it has two higher equality bars, namely two classes with the same
absolute frequency. In addition, it is biased, indicating that the variable exhibits asymmetric behavior, with data
concentrated on the right side, consistent with the aforementioned dispersion. The categories with the highest frequency of

data occurrence are 802-862 and 862-922, with the first containing the mean and median.
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Figure 8. Absolute frequency histogram of coarse aggregate variables for the Porrero method. Source: authors.

4.2 Determination of probability distributions with Easyfit software version 5.6

The distribution that best fits the available data for each variable and design method was determined through the
program (see Table 3). For the five most suitable, a new adjustment order was determined compared to the average level,
with a confidence level of 0.95 (see Table 4). Next, only five best fit distributions will be given for the calculation and
analysis results of variable water in the ACI method. The same procedure was used for other variables.

4.2.1 ACI method for conventional concrete mix design

Table 3 shows the adjustment order of the distribution, with the number one indicating that it is the best adjustment
made for each test. In order to simultaneously consider the Kolmogorov-Smirnov and Anderson-Darling tests, their ranges
were weighted to estimate the five distributions that best fit the data. As shown in the table, the Chi-Square test is not
applicable to many distributions processed by the program, so its results were not used for analysis. In each goodness test,

the five distributions that best fit the data set are indicated in red.




Table 3. Adjustment of the different distributions for the water variable of the ACI Method. Source: authors.

O 0 ~1 O\ th P W o

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Distribucion

Beta

Burr

Burr (4P)
Chi-Squared
Chi-Squared (2P)
Dagum

Dagum (4P)
Erlang

Erlang (3P)

Error

Error Function
Exponential
Exponential (2P)
Fatigue Life
Fatigue Life (3P)
Frechet

Frechet (3P)
Gamma

Gamma (3P)
Gen, Extreme Value
Gen, Gamma
Gen, Gamma (4P)
Gen, Pareto
Gumbel Max
Gumbel Min
Hypersecant

Inv, Gaussian
Inv, Gaussian (3P)
Johnson SB
Kumaraswamy
Laplace

Levy

Levy (2P)
Log-Gamma
Log-Logistic
Log-Logistic (3P)

Kolmogorov Smirnov

Anderson Darling

Chi-cuadrado

Valor
Ponderado
Estadistica Rango Estadistica Rango Estadistica Rango
0,4072 14 8,8783 37 N/A 25.5
0,44178 35 6,8911 29 20,025 19 32
0,57948 53 14,602 54 N/A 53,5
0,45346 38 7,6365 33 11,016 10 35:5
0,42551 33 6,5273 11 N/A 22
0,71365 57 L7.592 57 N/A 57
0,37526 1 6,2422 1 N/A 1
0,4064 13 6,7848 17 7,2907 8 15
041611 28 6,8068 19 20,007 18 23,5
0,44653 36 7,0457 31 18,473 12 335
1 59 N/A N/A 59
0,59915 54 13,136 52 N/A 53
0,54714 51 10,661 44 N/A 47,5
0,41104 22 6.8449 25 7.1178 5 235
0,38282 6 6.5068 10 N/A 8
0.46985 40 6.7802 16 N/A 28
03884 9 6.4049 4 N/A 6.5
0,41037 20 6.8192 23 72778 7 21.5
0,38615 7 6.5454 12 N/A 9.5
0.45574 89 10,436 43 N/A 41
0.41276 24 6,875 28 19,207 17 26
0,3814 4 6,4881 9 N/A 6,5
0.47674 41 10,864 47 N/A 44
0,41476 25 6,3864 3 N/A 14
0,48577 43 12,337 51 N/A 47
0,42781 34 6,7606 15 18,575 13 24.5
0,41576 27 6,8483 26 19,115 16 26,5
0,42253 32 6,8663 27 20,046 20 29.5
0,49384 48 11,296 49 N/A 48.5
0,49092 45 9,2799 39 N/A 42
0,44653 37 7,0457 32 18,473 11 34,5
0,65015 55 15.45 55 N/A 55
0.47977 42 10,275 42 N/A 42
0.40916 18 6.8029 18 7.1413 6 18
041272 23 6,4289 5 N/A 14
0,37888 2 6,2459 2 N/A 2
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37 Log-Pearson 3 0.,49251 46 11,292 48 N/A 47

38 Logistic 0,42223 31 6,7504 14 18,66 14 22,5
39 Lognormal 0,41086 21 6.,8428 24 7,1177 4 225
40 Lognormal (3P) 0.38053 3 6.47 8 N/A 5.5
41 Nakagami 0.40985 19 6.8146 22 7.4442 9 20,5
42 Normal 0,41563 26 6,9225 30 18.856 15 28
43 Pareto 0,5523 52 10,86 46 N/A 49
44 Pareto 2 0,67394 56 16,507 56 N/A 56
45 Pearson 5 0,40896 17 6.8104 21 7,0703 2 19
46  Pearson 5 (3P) 0,38244 5 6.4383 7 N/A 6
47 Pearson6 0,40881 15 6,8098 20 7.0764 3 17.5
48  Pearson 6 (4P) 0,38703 8 6.4297 6 N/A 7
49  Pert 0,3979 10 8,6951 36 N/A 23
50  Power Function 0,40891 16 11,43 50 N/A 33
51 Rayleigh 0,50263 49 10,728 45 N/A 47
52 Rayleigh (2P) 041812 29 8.4003 35 N/A 32
53 Reciprocal 0.48657 44 9.0656 38 N/A 41
54  Rice 0,53971 50 9,4227 40 4,7238 1 45
55 Student'st 0,99998 58 306,91 58 N/A 58
56  Triangular 0.,49255 47 10,242 41 N/A 44
57 Uniform 0,40219 12 14,12 53 N/A 325
58  Weibull 0,42062 30 7,6942 34 N/A 32
59  Weibull (3P) 0,40072 11 60,5923 13 N/A 12
60 Cauchy No hay ajuste

61 Johnson SU No hay ajuste

After weighting, the first five adjusted positions were selected from this column. For this variable, the results were
Dagum (4p), Log-Logistic (3p), Log-Normal (3p), Pearson 5 (3p), and Gen. Gamma (4p). Under these five distributions,
with a probability of 0.95, a new adjustment order was established considering the standard deviation (see Table 4).

Table 4. Distributions that best fit the data obtained for the water variable by the ACI design method for a confidence level

of 95%. Source: authors.

Orden de ajuste Desviacién con

# I con la Media SRR respecto a la media
1 Dagum (4P) 4 203.88 1,66
2 Log-Logistic (3P) 5 203,76 1,72
3 Lognormal (3P) 2 209,52 1,06
4 Pearson 5 (3P) 3 209,48 1,29
5 Gen, Gamma (4P) 1 210 1,04

MEDIA 207,328
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The probability distribution with the smallest deviation will be the one closest to the estimated mean. For this variable,
it is the Gen. Gamma (4P) distribution, with parameters k = 0.69112, a. = 29.055, B = 0.20432 and y = 169.86 (see Table 5).
By comparing these distributions in Figure 9, it can be seen that the distribution with the highest contribution corresponds
to the number 5, namely the Gen. Gamma (4p) distribution, while the distribution with the lowest contribution is the
number 2, Log-Logistic (3p).
Table 5. Adjust the density function parameters of the distribution based on the data obtained from variable water using the

ACI design method, with a confidence level of 95%. Source: authors.

# Distribucion Parametros

1 Beta o=2,7267 a2=4,3652 a=180.0 b=224.96
2 Burr k=0,32465 o=154,89 p=193.66

3 Burr (4P) k=0,51124 o=0,78193 p=1.6994 y=180.0
4 Chi-Squared v=196

5 Chi-Squared (2P) v=25 =171.06

6 Dagum k=173.05 o=14,577 p=125,63

7 Dagum (4P) k=1,0455 o=11,304 p=27.931 y=167.49
8 Erlang m=611 p=032213

9 Erlang (3P) m=14 B=1,9235 +=170.,5

10 Error k=10 ¢=7,9641 p=196,9

11 Error Function h=0,08879

12 Exponential 2=0,00508

13 Exponential (2P) 7=0,05917 y=180

14 Fatigue Life o=0,03822 p=196,76

15 Fatigue Life (3P) a=0,2036 B=33.878 1=162.32

16 Frechet «=26.726 [=19196

17 Frechet (3P) a=1,3914E+8 [=8.7148E+8 y=-8,7148E+8
18 Gamma a=61125 p=0,32213

19 Gamma (3P) a=13,724 p=1,9235 y=170.5

20 Gen, Extreme Value k=0,4797 ¢=2,0075 p=193,95

21 Gen, Gamma k=1,0101 «=652,15 p=0,32213

22 Gen, Gamma (4P) k=0.69112 0=29.055 B=0,20432 y=169,86
23 Gen, Pareto k=0.36501 6=29218 pu=192.3

24 Gumbel Max o=62096 u=19332

25 Gumbel Min 6=62096 pu=20048

26 Hypersecant o=7.9641 p=196.9

27 Inv, Gaussian 2=1,2035E+5 p=196.9

28 Inv, Gaussian (3P) 7=824.35 p=34,562 y=16234

29 Johnson SB 1=2.7234 6=0,95617 3=98,098 £=188.93
30 Kumaraswamy =105 o2=1,15a=180.0 b=22496

31 Laplace 2=0,17757 p=196.9

32 Levy o=196.61

33 Levy (2P) 6=13,058 y=178.48

34 Log-Gamma 0=18483.0 B=2.8577E-4
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35

37
38
39
40
41
42

43

45

47

49

51

52

35

57

58

59

61

Log-Logistic
Log-Logistic (3P)
Log-Pearson 3
Logistic
Lognormal
Lognormal (3P)
Nakagami
Normal

Pareto

Pareto 2
Pearson 5
Pearson 5 (3P)
Pearson 6

Pearson 6 (4P)
Pert

Power Function
Rayleigh
Rayleigh (2P)
Reciprocal
Rice
Student's t
Triangular
Uniform
Weibull
Weibull (3P)
Cauchy

Johnson SU

a=36285 B=195.85

a=11258 B=27.504 y=168,03

«=0.87018 B=0,04165 y=52457

6=4.3908 p=196.9

0=0,0382 p=5.2819

0=0.21499 p=3.4523 y=164.55

m=140,28 Q=38831.0

0=7.9641 p=196.9

a=11237 p=180

a=165,62 p=26511,0

a=703,22 p=1,3826F+5
=34102 p=1311,3 =15723

@ =13971,0 a:=737.68 p=10,382

@ =57.287 0:=38,152 p=21,181 y=164,1

m=194,11 a=180 b=22496
=0,72894 a=180,0 b=22496
o=157.1

0=13,396 =180

a=180.0 b=224.96

v=19328 ©=5.8943

v=2

m=194,99 a=180.0 b=224.96
a=183,11 b=210,69

o=23,176 p=20042

«=2,338 p=20,731 y=178.39
No hay ajuste

No hay ajuste

By comparing these distributions in Figure 9, it can be seen that the distribution with the highest contribution

corresponds to the number 5, namely the Gen. Gamma (4p) distribution, while the distribution with the lowest contribution

is the number 2, Log-Logistic (3p).

Figure 9. Differences of the water variable by the ACI design method between the different distributions. Source: authors.
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Figure 10 presents the analysis of the fit tests for the hypothesis test of the distribution Gen. Gamma (4P) distribution.

Kolmogorov-Smirnov

| Gen. Gamma (4P) [#22]

Tamario de la muestra | 30

Estadistica 0.3814

valor P 1.9632E-4

Rango 4

o 0.2 ‘ 0.1 0.05 ‘ 0.02 ‘ 0.01
' valor critico | 0.19032 \ 0.21756 0.2417 ‘ 0.27023 ‘ 0.28987 |
Rechazar? si | si | si | si | si
Anderson-Darling

Tamarno de la muestra | 30

Estadistica 6.4881

Rango 9

o 0.2 0.1 0.05 0.02 0.01
valor critico 13749 | 19286 | 2.5018 | 3.2892 | 3.9074 |
| Rechazar? si si | si si Si

Figure 10. Analysis of the goodness-of-fit tests for the acceptance or rejection of the hypotheses of the distribution Gen.

Gamma (4P) distribution. Source: authors.

In the case of Kolmogorov-Smirnov, the test statistic for cumulative observation and theoretical frequency is 0.3814,
exceeding the critical value of 0.2417 at a significance level of 0.05. For example, the null hypothesis indicating that the
data follows a specific distribution is rejected. When analyzing based on the P-value of 0.000196, it can be seen that
according to the above situation, the P-value is lower than the five confidence levels used by the plan to reject the null
hypothesis. Anderson Darling's test statistic is 6.4881, which is higher than the critical value at different significance levels,
thus rejecting the assumption that the distribution of the dominant water variable data is a specific form. Following the
entire program of cement, fine aggregate, and coarse aggregate mentioned above, the deviation of Gen distribution is
relatively small. The extreme values of parameters k = 0.07189, ¢ = 13.61, and p = 361, Weibull (3P) with parameters o =
7.1563, B = 627.35, and y = 329.93, and Frechet with parameters o = 13.534 and B = 860.32 (see Tables 6, 7, and 8,
respectively).

Table 6. Distributions that best fit the data obtained for the cement variable by the ACI design method for a confidence

level of 95%. Source: authors.

Orden de ajuste Desviacién con

& Instrihicign con la Media Cementy(Kg) respecto a la media

1 Cauchy 5 369,63 1,93

2 Log-Logistic (3P) 2 361.25 0,38

3 Burr 4 360,24 0,66

4 Gen, Extreme Value 1 361,56 0.3

5 Frechet (3P) 3 360,49 0,59
MEDIA 362,634
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Table 7. Distributions that best fit the data obtained for the fine aggregate variable by the ACI design method for a

confidence level of 95%. Source: authors

B

1 Gumbel Min 5 1047,7 1,36

2 Gen. Extreme Value 2 1057.3 0.46

3 Weibull 3 1070,5 0,78

4 Error 4 10742 1.13

5 Weibull (3P) 1 1061,2 0,09
MEDIA 1062,18

Table 8. Distributions that best fit the data obtained for the coarse aggregate variable by the ACI design method for a

confidence level of 95%. Source: authors.

b D O oy Seion
1 Frechet 1 10714 0.54
2 Fatigue Life (3P) 3 1055.9 0,91
3 Inv, Gaussian (3P) 2 1056 0.9
4 Log-Logistic (3P) 5 1093 2.57
5 Gamma (3P) 4 1051.8 1.3

MEDIA 1065,62

When comparing the five best distributions in each of these variable cement, fine and coarse aggregate, it can be seen
in Figure 11 that the distribution with the highest value is the one corresponding to number 1, i.e., the Cauchy distribution
(4P) and the one that contributes the least is the Burr distribution. In Figure 12, the distribution with the highest value is the
one corresponding to number 4, that is, the Error distribution, and the one with the lowest value is the Gumbel Min. In
Figure 13, the distribution with the highest value is the one corresponding to number 4, that is, the Log-Logistic (3P)

distribution, and the one with the lowest value is the Gamma (3P), respectively.
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Figure 11. Differences of the cement variable by ACI design method between the different distributions. Source: authors.
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Figure 12. Differences of the fine aggregate variable by ACI design method between the different distributions. Source:

authors.
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Figure 13. Differences of the coarse aggregate variable by ACI design method between the different distributions. Source:

authors.

Figures 14, 15, and 16 show the density functions most suitable for water, cement, and fine aggregate variable data, as
well as the corresponding unimodal and biased histograms, while Figure 17 shows the density functions most suitable for
coarse aggregate variable data, with the histograms being bimodal and biased. This is consistent with the results of

descriptive statistical analysis, indicating consistency.

EE———

B 1 E1 W BT F Fh] ) 2 E] ) £

Orengms  —Cun Garma ()

Figure 14. Density function for the Gen. Gamma (4P) distribution applicable to the data of the water variable by the ACI

design method. Source: authors.
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Figure 15. Density function for the Gen. Extreme value distribution applicable to the cement variable data by the ACI

design method. Source: authors.
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Figure 16. Density function of the Weibull distribution (3P) applicable to the fine aggregate variable data of the ACI

design method. Source: authors.
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Figure 17. Density function for the Frechet distribution applicable to the data of the coarse aggregate variable by the ACI

design method. Source: authors.

4.2.2 Structural concrete manual or Porrero's method
Table 9 shows the five distributions with the first positions in the fit after weighting with respect to the goodness-of-fit
tests, which for the variable water are: Hypersecant, Error, Log-Logistic (3P), Burr and Johnson SU. Calculating the
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amount of water with these five distributions for a confidence level of 0.95 and comparing these values with their mean, a
new order of adjustment was established that considers the deviation with respect to the mean, and in this case, the
probability distribution that is closest to the estimated mean value is the Hypersecant or Secant Hyperbolic distribution
whose parameters are: 6 = 19.278 and p = 200.05.

Table 9. Distributions that best fit the data obtained for the water variable by Porrero's method for a confidence level of

95%. Source: authors.

Orden de Desviacion con
# Distribucion ajuste con la Cemento (Kg) respecto a la
Media media
1 Hypersecant | 231,25 0,02
2 Error 2 231,84 0,23
3 Log-Logistic (3P) 3 230,75 0,24
4 Burr 4 230,66 0,28
5 Johnson SU 5 232,03 0,31
MEDIA 231,306

When comparing these distributions in Figure 18, the distribution with the highest value is the one corresponding to

number 5, i.e., the Johnson SU distribution, and the one with the lowest value is the Burr distribution.
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Figure 18. Differences of the variable water by Porrero's design method between the different distributions. Source:

authors.

Following this procedure for cement, fine and coarse aggregates, the Log-Pearson 3 distribution with parameters o =
1027.3, B =-0.00375, y = 9.8099 was obtained with lower deviation.; Johnson SB, with parameters y = 1.0872, § = 1.09, A
= 684.38, £ =711.43 and Chi-Squared (2P), with parameters v = 4297, y = -3452.2 respectively (see Tables 10, 11 and 12).
When comparing the five best distributions in each of these variable cement, fine and coarse aggregates, it can be seen in
Figure 19 the distribution that contributes the highest value is the one corresponding to number 3, that is, the Log-Logistic

distribution (3P) and the one that contributes the least is Gen. Gamma.
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Table 10. Distributions that best fit the data obtained for the cement variable by the Porrero design method for a

confidence level of 95%. Source: Authors.

rden de ajuste Desviaciéon con
# DAram Ocon Ia Me‘::lia Cleltienio (k%) respecto a la Moedia
1 Gamma 3 469,52 0,23
2 Log-Pearson 3 1 470,37 0,05
3 Log-Logistic (3P) 5 474,05 0,73
4 Gen. Gamma 4 468.91 0,36
5 Burr 2 470,24 0,08
MEDIA 470.618

Table 11. Distributions that best fit the data obtained for the fine aggregate variable by the Porrero design method for a

confidence level of 95%. Source: authors.

¢ pibuon  OCSEES Comeno (k) S

1 Johnson SB 1 11393 0,01

2 Gen. Extreme Value 2 11399 0,04

3 Weibull (3P) 3 1140,1 0,06

4 Frechet (3P) S 11356 0,34

5 Pearson 5 (3P) 4 11422 0,24
MEDIA 113942

Table 12. Distributions that best fit the data obtained for the coarse aggregate variable by the Porrero design method for a

confidence level of 95%. Source: authors.

Orden de ajuste Desviacion con
# Distribucio to (K
R con la Media Cemexionky respecto a la Media
1 Gen. Extreme Value 2 999.61 0,07
2 Error 4 997.88 0,1
3 Gen. Gamma 5 10004 0,15
4 Chi-Squared (2P) | 998.39 0,05
5 Normal 3 998,15 0,07
MEDIA 998.886
476
474
472 ® Comparacion
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1 2 3 4 5

Figure 19. Differences of the cement variable by Porrero's method between the different distributions. Source: authors.
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In Figure 20, the distribution with the highest value is the one corresponding to number 5, that is, the Pearson 5 (3P)
distribution, and the one with the lowest value is the Frechet (3P) distribution. In Figure 21, the distribution with the

highest value is the one corresponding to number 3, i.e., the Gen. Gamma and the one that contributes the least is the Error,

respectively.

B Comparacion
entre las
distribucione

Figure 20. Differences of the variable fine aggregate by Porrero's method between the different distributions. Source:

authors.
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Figure 21. Differences of the coarse aggregate variable by Porrero's method between the different distributions. Source:

authors.

Figures 22, 23, 24 and 25 show the density function that best fits the data of the variable water, cement and coarse and

fine aggregate with the corresponding histograms, which are unimodal and skewed, in agreement with the results of the

descriptive statistical analysis.

o4 [~
£ ) )

) ) ) D ¥ ) ) N

SESTEp—

Figure 22. Density function for the Hypersecant distribution applicable to the data of the water variable by the Porrero
design method. Source: authors.
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Figure 23. Density function for the Log-Pearson 3 distribution applicable to the data of the cement variable by Porrero's

method. Source: authors.
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Figure 24. Density function for the Johnson SB distribution applicable to the data of the fine aggregate variable by

Porrero's method. Source: authors.
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Figure 25. Density function for the Chi-Squared (2P) distribution applicable to the data of the coarse aggregate variable by

Porrero's method. Source: authors.

Tables 13 and 14 present a summary of the mean and standard deviation statistics and the distributions determined for

each of the concrete components by design method.
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Table 13. Summary of statistics and distributions that best fit the variables under study for the ACI design method. Source:

authors.
. : Desviacion s oo
Variable Media . Distribucion
Estandar
Agua (Lt) 196.9 7,9641126 Gen. Gamma (4P)

Cemento (Kg) 325,393 19.3956592 Gen. Extreme Value

Agregado Fino (Kg)  916,12933 100,810663 Weibull (3P)
Agregado Grueso (Kg) 902,51167 75.6389341 Frechet

Table 14. Summary of statistics and distributions that best fit the data for the variables under study for Porrero's method.

Source: authors.

Variable Media Desviacion Distribucion
Estandar
Agua (Lt) 200,048132 19,2776083 Hypersecant
Cemento (Kg) 389,5895 46,7371563 Log-Pearson 3
Agregado Fino (Kg)  916,337276 116277188 Johnson SB

Agregado Grueso (Kg)  845,062908  93,067619 Chi-Squared (2P)

It should be noted that although the components are the same and the method of construction is different, the
distributions obtained are not similar, nor are the statistical values.

4.3 Distributions of certain probabilities

4.3.1 ACI design method

The water variable value of this method ranges from 188.94 to 204.86 liter, with an average value of 196.9 liter and a
deviation of 7.96 liter. The most suitable distribution for its data is the generalized Gamma of four parameters, which is a
leptokurtic curve with positive skewness and its probability density function is as follows:

) — (069112)e(x—169.86)0 40130 w085 -1 _(x—169.80 3O (3)
f(x) - (0.20432)0-69212°29.055 .1 () b

The values of the variable cement are in the range 305.99 - 344.79 kg, with an average value of 325.39 kg and a
deviation of 19.40 kg. The distribution that best fits the data is the generalized extreme value, this is a leptokurtic curve

with positive skewness and its probability density function is:

x— 3165 (4)
7= —
13.61
1 i YT 1
f(x) = m % @~ (1#0.07189+z) o.o72es (1+ 0.07189 = 2) G (5)

For the variable fine aggregate, the values are in the range 815.32 - 1016.94 kg, with an average value of 916.13 kg
and a deviation of 100.81 kg. The distribution that best fits the data is the 3-parameter Weibull, which is a platykurtic curve

with negative skewness and its probability density function is:

flx) =

13.534 (860.32)13'53“1 _(880.32) s 6)

b3 =g & x
860.32 x
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For the coarse aggregate variable, the values are in the range 826.87 - 978.25 kg, with an average value of 902.51 kg
and a deviation of 75.64 kg. The distribution that best fits the data is the Frechet, which is a platykurtic curve with positive

skewness and its probability density function is:

13.534 (860.32)13-53“1

aeo.sz«fim
86032 |

*e-( x

F) = : )
4.3.2 Porrero design method
The values of the variable water for this method are in the range 180.77 - 219.33 liter, with an average value of 200.05
liter and a deviation of 19.28 liter. The distribution that best fits your data is the Secant Hyperbolic, which is a leptokurtic

curve with positive skewness and its probability density function is as follows:

cec hn(x - 200.05) (8)
fFlx) = 2%19.278
2 *19.278

The values of the variable cement are in the range 342.85 - 436.33 kg, with an average value of 389.59 kg and a
deviation of 46.74 kg. The distribution that best fits your data is the Log-Pearson 3, which is a platykurtic curve with

positive skewness and its probability density function is:

3 — 1027.3-1 (_in(x)-9.8099\ (9)
£x) = 1 (in(x) 98099) *e[-, Intel )

—0.00375
x * |—0.00375| * '(1027.3) —0.00375

For fine variables, the values range from 800.06 to 1032.62 kg, with an average value of 916.34 kg and a deviation of
11.28 kg. The distribution that best fits its data is Johnson SB, which is an asymmetric regular plane curve with a
probability density function of:

x—711.43 (10)
684.38 jioge = (11
1.09 ' (\_—5{“1.0372 1.09+n(3=)) J

684.38 x\2m*xz* (1—2)

-
<

f(x) =

For the coarse aggregate variable, its value ranges from 751.99 to 938.13 kg, with an average of 845.06 kg and a
deviation of 93.07 kg. The most suitable distribution for its data is the Chi-Square of two parameters, which is a negative

asymmetric plastic curve with a probability density function of:

4297 ¢ x—(—3452.2 12
(x — (—34522) 2z ‘xel 2 ) (e
4297

24297 /2 *-r( 5 )

fx) =

5. Conclusions

In the descriptive analysis of these two methods, the variables of water, cement, and fine aggregate exhibit similar
behavior in histogram and symmetry, while coarse aggregate exhibits different behaviors. All research variables exhibit
downward and intermediate dispersion, with minimal variability, reflecting the correctness of the obtained probability
distribution. Most importantly, through its probability theory and sampling theory, it can be demonstrated through
statistical science in both technical and scientific aspects.

Furthermore, as expected, they are of continuous type, as the variables being studied are continuous, indicating that
the results obtained are consistent. The results of EasyFit software are consistent with those of descriptive statistical

analysis, therefore, it is considered reliable for this study.

23



Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] ACI 211.1-91, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,
American Concrete Institute, 2002.

[2] J. Porrero, et al. Manual del concreto estructural, SIDETUR, Caracas, Venezuela, 2004.

[3] A. Garcia, Analisis de Distribuciones Estadisticas Alternativas a las Tradicionales para la Optimizacion de los
Caudales de Calculo Empleados en los Estudios Hidrologico (Tesis Doctoral), Universidad de Extremadura, Badajoz, 2013.

[4] Z. Ceron, Analisis Probabilistico del Concreto de Alta Resistencia (Trabajo de Grado), Universidad Catolica de
Colombia, 2013.

[5] COVENIN 221:2001, Materiales de Construccion. Terminologia y definiciones FONDONORMA, Venezuela,
2001.

[6] N. Azuaje, et. al, Estimacion de la constante de carbonatacion "K" en concreto expuesto al ambiente en la ciudad
de Nirgua, Estado Yaracuy, Trabajo Especial de Grado, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2013.

[7] R. A. Dantas, Ingenieria de tasaciones una introduccion a la metodologia cientifica, premio Charles B. Akerson -
UPAV 2000, Ed. Pini Ltda, 2002.

[8] M. Suarez, Curso Estadistica, Universidad Centroccidental Lisandro Alvarado, Decanato de Ingenieria Civil,
Venezuela, 2008.

[9] A. Rojas, Correlacion entre el pulso ultrasénico y la resistencia a compresion en cilindros de concreto, Trabajo
Especial de Grado, Universidad Centroccidental Lisandro Alvarado, Decanato de Ingenieria Civil Urbanismo, Venezuela.
2011.

[10] Mathwave Tecnologies, Ayuda del Software EasyFit version 5.6., 2015.

24



