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Abstract: It is well known that for the pyramidal central configuration of the five-body problem, four masses are located 
at the vertices of the square and the fifth mass is located on a line perpendicular to the plane containing the square. And the 
line passes through the geometric center of the square. If the potential is Newtonian, then the values of the four masses at 
the vertices of the square are equal. In this paper, by using some properties of circulant matrices, we find that if the poten-
tials are logarithmic potentials, then the values of the four masses are equal, too.
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1. Introduction 
In n-body problem, central configurations play a significant role in the analysis of collision 
orbits, expanding gravitational systems, and the limitations that affect the configurations assumed by the bounded 

motion [1]. For the Newtonian potential, in 1772, Lagrange [2] discovered the famous Lagrange equilateral-triangle central 
configuration, where three masses are located at the vertices of the regular 3-polygon, and showed that the values of the 
three masses may not be equal. In 1985, also for the Newtonian potential, for regular n-polygon central configuration with 
n≥4, Perko and Walter [3] proved a surprising result that if n masses are located at the vertices of regular n-polygon, then 
the values of the n masses must be equal. In 2019, Wang [4] extended the result to general homogeneous potentials.

For the spatial n-body problem, when the potential is the Newtonian potential, a regular n+1 polyhedron where the base 
is a regular n-polygon, forms a pyramidal central configuration [5]. 

Fayҫal [6] investigated the pyramidal central configuration of the 5-body problem where four masses are located at 
the vertices of a rectangle and the potential is Newtonian potential, and proved that the rectangle must be a square. In this 
paper, we investigate the spatial 5-body problem with the potentials are logarithmic potentials, which are the limiting cases 
of general homogeneous potentials. More precisely, suppose that four masses are located at the vertices of a square and the 
fifth mass is located on a straight line perpendicular to the plane that contains the square, and the straight line passes through 
the geometric center of the square, we investigate the mass values in the pyramidal central configuration where the base is a 
square and the potential are logarithmic potentials.

2. Challenges
References [7] show us that for the masses 1 2 5, , , +∈m m m R with the corresponding positions 3 5

1 2 5, , , ( )∈q q q R , 

the pyramidal central configuration exist if and only if there exists constant λ ∈R such that the following equations (1.1) and 
(1.2) hold:
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the barycenter of the five body system is 0 1 5 1 5
[ ] / [ ]

≤ ≤ ≤ ≤
= ∑ ∑k k kk k

c m q m , and 0>h is the distance from 5q to the plane 

that contains the square. When the potentials are logarithmic potentials, which are diffenrent from the Newtonian potential, 
it is difficult to obtain relationships among mass values from equations (1.1) and (1.2). 

3. Method
Our method is define the five 2 2× circulant matrices *, , ,A B D B and *D as follows:
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Then, we analysis the relationship between their eigenvalues and the corresponding eigenvectors, and the details are 
as follows.

Inserting (1.2) into (1.1), we have
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where 1 2 3 4 1( , ) , ( , ) , (1,1)ν= = =T T Tm m m M m m and 2
2 1 1( , ) ( 1,1) .ν ρ ρ= = −T T Note that there exist four constants 

1 2 1 2, , ,α α β β ∈C such that 

 1 1 2 2αν α ν= +m   and  1 1 2 2 .βν β ν= +M  (1.4)

Then, inserting (1.4) into (1.3), we can conclude that 
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(1.5)

By properties of circulant matrices [8] and direct computation, the eigenvalues of five circulant 
matrices , ,A B D̂ , *B  and *D are

* *
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1( ) ( ) , ( ) ( ) 1, ( ) ( ) 0
2

µ µ µ µ µ µ= = = = = =A A B B B B , *
1 1( ) ( ) 0µ µ= =D D

 
 and

*
2 2( ) ( ) 1.µ µ= =D D Then, combining (1.5), we have
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which implies that
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Thus, 1 1α β= and 2 2 .α β= iThen, combining (1.4), 1 (1,1)ν = T and 2 (-1,1)ν = T, we obtain 

 1 1 2 2αν β ν= +m i and 1 1 2 2 ,αν β ν= +M  (1.6)

where 1 2( , )= Tm m m and 3 4( , )= TM m m .Hence 1 3 2 2
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Denote 2 1 2 1 2where , .β γ γ γ γ= + ∈i R Then, 2 2 1 22 2 ,β β γ γ− = − − ∈i i R which implies that 2 0.γ = Therefore,  

 
2 1 .β γ= ∈R Moreover, if 2 0β ≠ ， then employing 1 3 2 2
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， we have 2 4 2 2 ,β β− = − ∉m m i R and it is 

impossible. So 2 0β ≠ can not occur, i.e., 2 0β = . Then with the aid of (1.6), our conclusion holds. 

4. Conclusion
Let the configuration 1 2 5[ , , , ]= q q q q be defined as in equation (1.2). If q is a pyramidal central configuration with 

logarithmic potentials for the mass vector 1 2 5[ , , , ]= m m m m , then we have 1 2 3 4= = =m m m m .
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